
DoX: A Peer-to-Peer Antidote for DNS Cache
Poisoning Attacks

Lihua Yuan
ECE, UC Davis

lyuan@ece.ucdavis.edu

Krishna Kant
Intel Corporation, OR

krishna.kant@intel.com

Prasant Mohapatra
CS, UC Davis

prasant@cs.ucdavis.edu

Chen-Nee Chuah
ECE, UC Davis

chuah@cs.ucdavis.edu

Abstract— 1The mapping service provided by the Domain
Name System (DNS) is fundamental not only to the health of
the Internet but also to the protection and integrity of the data.
Recently, the DNS infrastructure has suffered several malicious
attacks including DNS cache poisoning, which causes the DNS
to return false name-to-IP mappings and can be used as a
foothold for more insidious attacks. This paper proposes DoX,
a peer-to-peer based scheme, to detect and correct inaccurate
DNS records caused by cache poisoning attacks. DoX also helps
DNS servers to improve cache consistency by detecting and
removing obsolete records. DoX does not require modifications to
the current infrastructure and can be deployed quickly. It does
not use cryptographic techniques and thus does not suffer from
the key management and processing overhead issues of those
techniques.

I. INTRODUCTION

The Domain Name Service (DNS) provides name resolution
(or mapping) between human-friendly machine and domain
names and machine-friendly IP addresses. DNS is one of the
most valuable parts in the Internet infrastructure. Almost all
applications, including http, email and ftp, need to resolve
a given domain name to its corresponding IP address prior
to establishing connections. DNS is a distributed database
that uses intensive replication and caching to achieve high
scalability and resiliency to server failures. However, it was
not designed to counter malicious attacks like cache poisoning.
Being probably the most valuable infrastructure in the Internet,
it warrants thorough investigation to ensure its security.

DNS cache poisoning refers to cases where the cache of a
DNS server is injected with false information that affects the
accuracy of DNS lookups. Consequently, when queries arrive
at the server, they get inaccurate, and probably malicious,
replies. There are numerous ways to inject false information
into a DNS server by exploiting protocol or software vulnera-
bilities. After one poisoned record is injected into the cache, it
can spread to other parts of the cache or other servers through
query/response between DNS servers.

DNS cache poisoning is often used as a foothold for escalat-
ing to more harmful sub-attacks. The attacker can redirect the
querier to an IP address which (1) is nonexistent, thus causing
Denial-of-Service (DOS) to the querier, (2) is a malicious site
that drops Malware/Spyware [1, 2], or (3) is a masquerade
server for man-in-the-middle (MITM) attacks [3], which in-
cludes large scale phishing attacks known as pharming [4]

1This work is partly supported by Intel and NSF NeTS NBD-0520320

and hijacking of emails or SSL sessions. All these attacks
were observed in the March 2005 incident [2] reported by the
SANS Internet Storm Center.

Although cache poisoning attacks are extremely dangerous
— some refer to them as “the Achilles’ heel of the Internet” [5]
— there are few defense mechanisms to ensure the accuracy
of DNS lookups. In addition to piecemeal patches of specific
vulnerabilities, past work has focused on applying cryptog-
raphy techniques to authenticate DNS records. Secret key
transaction authentication for DNS (TSIG) [6] uses symmetric
key cryptography to authenticate client-server communica-
tions. However, the key distribution is not automatic and
it is impractical to establish trust relationships with every
other DNS server. The proposed DNS security extensions
(DNSSEC) uses a public-key cryptography to authenticate
DNS zone data. It relies on the DNS itself to serve as a public-
key infrastructure (PKI) to distribute the public key.

There are a few potential problems with DNSSEC that war-
rant investigation for alternative solutions. First, DNSSEC re-
quires a major overhaul to the current DNS system and global
cooperation from all parties involved. Although it has been in
development for more than 10 years, its wide deployment still
remains to be seen. Second, the success of DNSSEC requires
modifications to the DNS servers at every level, the availability
of security-aware resolver for every operating system, and
complex key management. Considering the fact that many
DNS servers are currently running with known vulnerabil-
ities, one probably cannot expect the complete deployment
of DNSSEC in a short time frame. Third, DNSSEC incurs
a significant performance penalty because PKI operations are
known to be very computationally intensive [7] and the signed
DNS packets could be substantially larger than original.

A similar problem to cache poisoning is a stale cache,
which is caused by record updates at authoritative servers.
DNS caches maintain weak consistency using a time-to-live
(TTL) timer before data is re-fetched from the origin server.
A stale record in the DNS cache provides an incorrect name
to IP mapping and subsequently causes application failures.
DNSSEC does not solve the problem of stale cache since
it only guarantees the authenticity of the data but not its
freshness. If attackers use authentic but obsolete records as the
poison, they can cause Denial-of-Service (DOS)-like failures.

Both a poisoned cache and stale cache cause inaccurate
DNS records, which lead to further attacks or failures, to

be returned to the clients. This paper proposes a peer-to-
peer (P2P) solution to the problem based on the observation
that DNS records are expected to be consistent with what
is dictated by the authoritative server. If all peers resolve a
given name correctly, their results should also be consistent,
except for a few cases which we will discuss in Sec. IV.
In contrast, cache poisoning is a local attack which affects
individual servers. It is difficult for attackers to compromise
several DNS servers simultaneously with the same false data
for the following reasons: First, the vulnerabilities are specific
to the architecture and software of the DNS server. Second,
compromising multiple servers is intrinsically more difficult
than compromising a single one, and especially so if this must
be accomplished within a short time frame. For man-in-the-
middle (MITM) attacks, attackers can bet on the chance to win
the race, but the probability of winning at multiple locations
during the same short time frame would be very low.

Based on these observations, we propose a P2P domain
name cross-referencing (DoX) technique, which groups peers
together to compare their DNS results and detect inconsisten-
cies. Upon the detection of any inconsistency — be it caused
by a poisoned or stale records in the cache — DoX peers
cooperate to resolve the inconsistency and converge to the
current, correct record. DoX is a client-side solution that does
not require any modification to the current DNS system.

The major contributions of this paper are

1) We perform an in-depth study on DNS cache poisoning
attacks, the evolution, propagation and consequences of
a poisoned cache.

2) We propose DoX, a novel P2P solution for detecting and
removing cache poisoning.

3) We briefly discuss a hierarchical model that we have
developed to characterize poisoning and update propa-
gation in the DNS.

The rest of this paper is organized as follows. Sec. II briefly
introduce the DNS architecture and Sec. III details various
cache poisoning attacks. Sec. IV presents the DoX algorithm
and Sec. V evaluate its performance. Sec. VI discusses some
related work and we conclude in Sec. VII.

II. BACKGROUND

DNS is commonly regarded as a distributed database in the
form of an inverted hierarchical tree (the right side of Fig. 1).
Each DNS server owns a domain (subtree) for which it is
the authority. For scalability, it can delegate a sub-domain to
another server and only maintain a referral to that server.

When an application needs to resolve a domain name, it uses
standard APIs, e.g. gethostbyname(), to access the resolver
offered by the operating system. The resolver, in turn, queries
its DNS servers. Administrators often configure the end-hosts
to point to a few cache-only name servers, which then forward
the queries to the central recursion name server. Since the
address of the root DNS servers are well-known, any DNS
servers capable of recursive lookups can follow the referrals
to the authoritative DNS server and get the desired response.

Browser
C

Email

FTP

Resolver
C host file

DNSa

C
DNSb

DNSc

DNSp

C

.

nz ausg

gov edu

gbsaips

Authority SideProxy Side

1: DNS Architecture

Caching is used at almost every stage of lookup process
and is instrumental to the scalability of DNS. If a query can
be answered based on the cached contents, the query will not
be forwarded and a response is returned. Otherwise, a best-
matching algorithm is used. A DNS server caches not only
the answer to the original query but also everything else it
learned so that it does not need to start from the root server
every time. The resolver, and even some applications, e.g. web
browsers, maintain its own cache. The extensive use of caching
significantly reduces the lookup time and improves scalability.
However, if any cache on the entire path is poisoned, the end
user will get a malicious reply.

III. CACHE POISONING ATTACKS

Although software vendors release patches soon after vul-
nerabilities are discovered, new ones emerge over time and a
large percentage of DNS servers are running with well-known
vulnerabilities [8]. A recent survey by Ramasubramanian and
Sirer [9] shows that the correct lookup of a domain name
depends on a surprisingly numerous 46 servers on average. In
this section, we look at how a cache poisoning attack evolves.

A. Poisoning Individual Records

A few vulnerabilities in DNS make it possible to inject
poisoned records without compromising the entire system.
One could attach malicious records as additional information
to a legitimate reply and some server implementations will
cache the additional records [10, 11] without necessary checks.
DNS is UDP-based and the transaction ID (and sometimes
source port number) is the sole form of authentication for a
DNS reply. Unfortunately for many implementations, guessing
the right transaction ID is possible [12]. The probability of
guessing the right transaction ID could be much higher due to
weaknesses in the random number generators, use of multiple
queries and the consequent birthday paradox [12].

As illustrated in Fig. 2, a DNS record can move from
unavailable (U) to cached (C) (poisoned (P)) if a correct
(poisoned) response is received. A cached record may become
obsolete (O) if the authoritative server modifies its local

C U P

O

Expired Record (P)

ExpiredRecord (C)

U
pd

at
e Expired

C: Cached

U: Unavailable

O: Obsolete

P: Poisoned

2: Individual Record

version. DNS caches a record for its TTL time. After that,
the record is discarded and becomes unavailable (U).

B. Poison Inheritance

Once a poison is injected, it can spread within the cache or
to its clients through normal query and response mechanism.
In Fig. 3, we model the DNS name space as an inverted
tree and queries as “hits” to the leaf nodes. Upon receiving
a query hit, the DNS server searches its cache for the closest
match record and starts a recursive lookup from there. A
poisoned closest match can misdirect the query to a malicious
name server that returns poisoned response, causing poison to
propagate in the cache. In Fig. 3, a query for gb.gov.au
is best-matched to .au, which is poisoned. The subsequent
recursive queries cause gov.au and gb.gov.au to inherit the
poisoned (P) status of .au. The same scenario was observed
on March 2005 [2] when the .com entry was poisoned and
subsequently many sub-domains under .com.

.
c

au
p

nz
u

sg
c

gov
u

edu
u

gb
u

hit

sa
p

ips
ulevel 3

level 2

level 1

level 0

(a) Inherited Poison

N gb

N-1 gov

N-2 au

C

C

U

U

U

P

P

P

(b) Hit-Through Model

3: DNS Cache Evolution

C. Poisoning the Entire Cache

The DNS server, resolver and client programs are also sub-
ject to common issues like buffer overrun and vulnerabilities of

the operating system. These include buffer overrun vulnerabil-
ities of early versions 4 and 8 of BIND (Berkely Internet Name
Daemon) and malwares that modify the host file of a browser
or a end-host. In such cases, one must assume the entire cache
is poisoned. Additionally, these poisons are persistent since
they cannot be flushed out by the TTL mechanism.

IV. THE ANTIDOTE: DOMAIN NAME CROSS REFERENCING

(DOX)

If a DNS lookup is affected by a poisoned cache, the
response must be different from what dictated by the au-
thoritative server. Naturally, one could verify a record with
its authoritative server, assuming the record about the au-
thoritative server is correct. However, verifying every record
with the authoritative server is not a viable approach since
it renders caching ineffective and hence the DNS unscalable.
In this section, we propose a domain name cross-referencing
(DoX) system in which peers collaboratively monitor their
DNS lookup results. We design a DoX peer to intercept
communication between a DNS query and its response. DoX
peers perform consistency checks with each other and consult
the authoritative server only if suspicious records are noticed.

A. DNS Inconsistency

Although DNS records should be consistent with entries dic-
tated by the authoritative servers, there are reasons other than
cache poisoning that lead to inconsistencies among clients.

1) Stale Cache: DNS cache uses a TTL-based weak con-
sistency mechanism that could store and return stale records.
This can be resolved if peers ignore the cache and reload the
record from authoritative servers. As a side effect, DoX detects
inconsistencies caused by modifications and resolves them by
synchronizing with the authoritative servers.

2) Load Distribution: DNS servers commonly use round
robin load distribution which rotates the order of the records
mapped to the same domain name. Consequently, for a domain
name that has three addresses A1, A2, A3 mapped to it, one
peer could receive A2, A3, A1 while the other could receive
A3, A1, A2. DoX uses set comparison for consistency check
to handle the permuted records.

3) Multiple Views: Some modern DNS servers, e.g BIND
9.2, can provide multiple views of the zone data. DNS servers
using multiple views can return different records based on the
IP address of clients. This is often used to separate internal
clients from external ones, offering the latter a limited, prob-
ably modified, view into the internal networks. Consequently,
two peers receiving different views will not be able to resolve
the inconsistency by querying the authoritative server. DoX
avoids raising false alarms in this case by verifying a record
update instead of a record itself. If the view assignment is
static, the older version of the record can serve as an indicator
to whether the two peers are under the same view.

4) Dynamic Mapping: Some content distribution networks
(CDNs) use DNS-based redirection for performance improve-
ment and load balancing. Clients could be assigned to servers
that are closer or less-loaded based on the current status. DoX

introduces the concept of verification channels so that peers
can avoid checking names served by CDNs.

B. DoX Network

1) Verification Channel: The entire DNS name space is
enormously large. Each DNS server is interested in resolving
only a very small subset of the name space. If two peers
both want to ensure the accuracy of a particular record,
the consistency check between them is mutually beneficial.
Otherwise, the consistency check is helpful to only one peer
and presents only overhead to the other. In addition, if two
peers share common queries, it will be more likely they can
verify for each other based on local cache. To reduce the
overhead and latency of verifications, we propose to construct
a verification channel to a group of peers that share common
interests . A verification channel could be defined in one of
the following ways.

• Topic channel: Topic channels use a similar concept as
mailing lists or IRC channels by defining suitable topics
in a certain channel. A topic refers to a set of the DNS
names, the correctness of which peers wish to collectively
guard. It can be all sub-domains under a certain domain,
e.g. intel.com or all domain names listed under a yahoo
directory, e.g. the “Government/Military/” directory.

• Community channel: A community channel exploits the
likelihood that peers from the same community will have
more common interests, or at a bare minimum, are willing
to bear the overhead for each other. A typical community
could be “everybody in the same company”.

A verification channel is described by a tracker file and
is coordinated by a tracker, which is a daemon program that
tracks participating peers and announces them to each other. A
peer joins a channel by opening the tracker file and connecting
to the tracker for bootstrapping. Every peer in a channel
are assigned k peers randomly so that the peers form a k-
connected network. We leave it to the tracker administrator to
setup the actual definition of a channel and peers choose the
suitable channel based on their own interest.

2) Verification Cache (vCache): If a record has been ver-
ified earlier and remains unchanged, it is unnecessary to be
verified again, even though it might have expired from the
local cache and therefore was obtained through DNS lookup
again. For this reason, we augment every peer with a separate
verification cache (vCache) to store previously verified results.
A vCache is similar to a normal DNS cache but stores records
for an unlimited amount of time. It flushes the old records only
if the memory limit is reached.

A natural consequence of using vCache is that a peer will
only verify a record with the DoX network if (1) the record
does not exist in the vCache or (2) the peer observes a record
update in which the version stored in vCache (Rv) is different
from the version obtained through standard DNS lookup (Rd).
We denote the older version of the record as Ro, the newer
version as Rn and the transition as Ro → Rn. The first case
is considered as a special case where Ro = None.

C. DoX Consistency Check Algorithm

Algorithm 1 DoXCheck(Q)

Rd ← DNS_Lookup (Q), Rv ← vCache_Lookup (Q)
if Rd = Rv then

return OK
else

Ro ← Rv, Rn ← Rd

Send Ro → Rn to k peers and get first m results
if #Disagree = 0 then

return OK
else

Ra ← Authoritative_Server_Lookup (Q)
if Ra �= Rn then

Poison Detected
else if Ra = Rn and #Agree > threshold then

return OK
else

WARNING

Algorithm 1 describes the DoX checking algorithm. The
version stored in vCache (Rv) was verified earlier and the
current version obtained through DNS lookup (Rd) might be a
newer version. If Rv �= Rd, the peer constructs a verification
request in the form of < Q,Ro → Rn >. The purpose of
including Ro in the verification request is to help determine
if the verifying and requesting peers are receiving different
views, which we elaborate shortly. A verification request is
sent to n remote peers simultaneously but the requester only
wait for the first m (m < n) responses to guard against peer
failures and reduce latency. If the local record is poisoned,
there will be “Disagrees” as long as at least one peer is not.
(The remote peers decide if they agree based on the algorithm
we will describe shortly.) In this case, the local peer will
use an “iteration-only” lookup to obtain an authoritative copy
(Ra) directly from the authoritative server. In the case of local
poisoning, Ra will not be consistent with Rn. If Ra = Rn

and a sufficient number of peers “Agree” with the verification
request, we consider the verification a success since there
might be malicious peers. Otherwise, we raise a warning.

A peer will perform consistency check upon receiving a
verification request in the form of < Q,Ro → Rn >. It
replies to the requesting peer with a verification response
in the form of <Decision, Info> where the decision can be
one of “Agree”, “Disagree” or “DiffView” and Info contains
additional information about this check.

The verifying peer first checks Rn with its local vCache
version (Rv). If they are consistent, the verifying peer can
“Agree” without further checks since it must have verified this
earlier. Otherwise, the verifying peer request an authoritative
copy (Ra) from the authoritative server and perform the
following checks.

• Rv = Ro: The two peers had consistent history record.
– Ra = Rn (Agree): The verifying peer observes

the same update from the authoritative server. The

reason it did not observe this update earlier is likely
a stale record in its local DNS cache. Therefore,
this verification request actually helps the verifying
peer to update the stale record faster than its TTL
expiration.
A verifying peer forwards a record update to other
peers if it agrees with the requesting peer. Conse-
quently, a record update is made known to every
peer in a DoX network after the first peer notices
the update. This can significantly reduce obsolete
records and failures caused by them. To avoid global
synchronization, a peer set the TTL to be a random
value between 1 and the original TTL.

– Ra �= Rn (Disagree): The verifying peer does not
observe the same update. In particular, if Ra = Ro,
the verifying peer does not observe a change at all.
The requesting peer is most likely poisoned.

• Rv �= Ro: The two peers did not have consistent history
record. If Ra = Rn (Agree), the authoritative server
is probably merging the two peers into the same view.
Even if Ra �= Rn (DiffView), it is possible that they are
assigned different views by the authoritative server and
the verifying peer.

• Ro = None or Rv = None: Either the requesting or the
verifying peer does not have this record in its vCache.
The verifying peer agrees if Ra = Rn and disagrees
otherwise. This case can be avoided using a safe startup
phase to initialize vCache.

V. SIMULATION EVALUATION

A. Simulation Setup

To study the performance of DoX, we implemented an
event-based simulator for the DNS infrastructure and the
proposed DoX scheme. The name space is based on the
2.7 million names listed on dmoz.org [13]. We queried the
authoritative server of individual names to find TTL values and
found that several popular ones, e.g. 1 hour, 2 hours, 1 day, and
2 days, dominate. Queries arrive with a Poisson arrival process
of rate λq to leaf nodes and the popularity of names follows
a Zipf-distribution. Every node in the namespace has equal
opportunity to be modified by their respective administrators.
Collectively, modifications follow a Poisson arrival of rate λm.
The root node is excluded from being modified and poisoned
since every DNS server has a root hint file and record about
the root servers has not changed for many years.

B. Evolution of A Standard DNS Cache

Fig. 4 presents the evolution of a standard DNS cache under
various conditions. Ideally, one hopes more records are cached
correctly so that queries can be answered locally. Arrivals of
queries cause records to be cached but the TTL expiration
mechanism also flushes records. Since all records have a
TTL expiration, a certain arrival rate will only keep a certain
number of records in the DNS cache. This is observed in
Fig. 4 before t = 5000. Starting from t = 5000, modifications
to DNS records are introduced. Consequently, certain cached

0

1000

2000

3000

4000

5000

#
 I
n
 C

a
ch

e

correct
obsolete
poison

0.0 0.5 1.0 1.5 2.0
Time (minutes) x1e4

0

20

40

60

80

100

%
 R

e
p
lie

s

correct
obsolete
poison

4: Evolution of a Standard DNS Cache

records become obsolete and this affects the accuracy of some
replies. The actual ratio of obsolete records depends on the
arrival of modifications and the TTL values of records.

Poison is injected at time 10000 for .com, at 12500 for
.net and at 15000 for .org respectively. Poisons do not
start to propagate or cause poisoned records being returned
for a small period. This is because a typical application does
not query .com directly. Instead, they query for leaf nodes
like www.cnn.com and if www.cnn.com or cnn.com is
cached, the recursive lookup will start from the best-match
instead of .com. However, once queries starts to reach the
poisoned nodes, it propagate down and spreads in the cache.

To inflict maximum damage, malicious attackers are likely
to set a very large TTL value for the poisoned record. Although
most DNS servers have a maximum allowable TTL value
(default is 7 days for BIND), it is significantly longer than the
TTL values of most DNS records. Consequently, we observe
a steady increase of poisoned cache over time until all names
under the .com (or .net or .org) branch is poisoned.
Because of this poison propagation mechanism, the attacker
need to succeed only once to affect a large number of users.

C. DoX for Poison Detection and Removal

Fig. 5 presents the evolution of DoX-protected DNS cache
based on a strict strategy in which every answer obtained
through DNS lookup is checked before it is relayed to the
querier. As long as there is at least one verifying peer that is
not poisoned, the requesting peer will be able to detect the
poison and remove it by flushing. In Fig. 5, poison is injected
at time 2000 for .com, at 4000 for .net and at 6000 for
.org. In the top figure, the injected poison can stay in the
cache for a while until a query hits it. However, it is detected
by DoX and removed immediately if it causes any poisoned
response to be returned. Since DoX stops poison from prop-
agating, we do not observe poisoned records in the cache or
poisoned replies as in Fig. 4. In addition, the percentage of
correctly cached records is significantly increased.

D. DoX for Improving Cache Consistency

In DoX, a verifying peer will forward a valid record update
to other peers in addition to sending the confirmation to the
requesting peer. Consequently, all peers in the DoX network
will update to the current record as soon as one peer notices

0

1

2

3

4

5

#
 P

o
is

o
n
e
d poisoned

0

1

2

3

4

5

#
 I
n
 C

a
ch

e

x1e5
correct
obsolete

0.0 0.2 0.4 0.6 0.8 1.0
Time (minutes) x1e4

0

20

40

60

80

100

%
 R

e
p
lie

s

correct
obsolete

5: Poison Detection and Removal

the update, independent of the DoX topology. Fig. 6 shows
that the average number of obsolete records decreases when
the size of the DoX network increases. Peers in a large DoX
network will observe negligible amount of obsolete records.

Correct

Stale

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

#
 R

e
co

rd
s

% Correct

0 5 10 15 20
Size of DoX Network

0.75

0.80

0.85

0.90

0.95

1.00

%
 C

o
rr

e
ct

6: Improving Cache Consistency

VI. RELATED WORK

Cao and Liu [14] studied several approaches to achieve
strong cache consistency for the web, including adaptive TTL,
polling-every-time, and proactive server invalidation. A server
invalidation scheme can also be used for improving DNS
cache consistency; however, the main difficulty is that the
DNS server would have to maintain states for known clients.
Invalidation does not protect against cache poisoning.

Several recent work, including Overlook [15], DDNS [16],
CoDNS [17] and CoDoNS [17], proposed to use structured
overlays as an alternative to provide scalable DNS lookups.
Exploiting the scalability and reliability of the underlying over-
lay network, these new DNS protocols achieve faster lookups
and fewer failures. However, none of these works addresses
the accuracy of DNS lookups. In fact, relying on peers for
DNS lookups could be dangerous if they are untrustworthy.

In contrast, the focus of DoX is on the accuracy of DNS
records. For a mission-critical system like DNS, its accuracy
should receive as much attention as, if not more than, per-
formance. DoX uses peers for consistency checks but never

stores nor forwards records from peers directly. A malicious
peer might cause DoX to unduly check with the authoritative
servers in the worst case. However, the records will remain
correct since a peer only uses records that it looks up itself.

The Netcraft Toolbar [18] aims to counter phishing attacks
by displaying the hosting location of the IP address to the
user. Users can manually detect poisoning in certain cases, e.g.
if a cache poison directs a client to a server in one country
while the client knows the server should be located in another
counter. This can restrict the maneuverable range of poisoning
but is not a complete solution.

VII. CONCLUSIONS

In this paper, we presented a new approach for combating
DNS poisoning attacks based on the idea of cooperative
verification among a set of peers. The scheme is simple,
avoids any modifications to the current DNS infrastructure, and
imposes only modest cost in terms of latency and overhead.
Furthermore, the scheme assists in improving the coherence
of DNS caches. The scheme was evaluated using simulation.
We have also developed an analytic model for the scheme; the
details of which will be presented elsewhere.

REFERENCES

[1] Symantec Corporation, “Symantec gateway security products DNS cache
poisoning vulnerability,” http://securityresponse.symantec.com/avcenter/
security/Content/2004.06.21.html, 2004.

[2] K. Haugsness and the ISC Incident Handlers, “DNS cache poison-
ing detailed analysis report version 2,” http://isc.sans.org/presentations/
dnspoisoning.php, 2005.

[3] I. Green, “DNS spoofing by the man in the middle,” http://www.sans.
org/rr/whitepapers/dns/1567.php, 2005.

[4] Netcraft Ltd., “DNS poisoning scam raises wariness of ’pharming’,”
http://news.netcraft.com/archives/2005/03/07/dns_poisoning_scam_
raises_wariness_of_pharming.html, 2005.

[5] J. Evers, “DNS servers–an Internet Achilles’ heel,” http://news.com.com/
DNS+servers--an+Internet+Achilles+heel/2100-7349_3-5816061.html,
2005.

[6] S. Kwan, P. Garg, J. Gilroy, L. Esibov, J. Westhead, and R. Hall,
“Generic Security Service Algorithm for Secret Key Transaction Au-
thentication for DNS (GSS-TSIG),” 2003.

[7] K. Kant, R. Iyer, and P. Mohapatra, “Architectural impact of secure
socket layer on internet servers,” in International Conference on Com-
puter Design, 2000.

[8] D. E. Kaminsky, “Black Ops of TCP/IP 2005,” http://www.doxpara.
com/, 2005.

[9] V. Ramasubramanian and E. G. Sirer, “Perils of transitive trust in the Do-
main Name System,” in Proc. International Measurement Conference,
2005.

[10] C. Schuba, “Addressing weakness in the Domain Name System proto-
col,” Master’s thesis, Purdue University, 1993.

[11] “Description of the DNS server secure cache against pollution setting,”
http://support.microsoft.com/kb/316786/EN-US/, 2005.

[12] J. Stewart, “DNS cache poisoning - the next generation,” http://www.
securityfocus.com/guest/17905, 2003.

[13] “dmoz - open directory project,” http://www.dmoz.org.
[14] P. Cao and C. Liu, “Maintaining strong cache consistency in the world

wide web,” IEEE Transactions on Computers, vol. 47, no. 4, 1998.
[15] M. Theimer and M. B. Jones, “Overlook: Scalable name service on an

overlay network,” in Proc. 22nd ICDCS, 2002.
[16] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving DNS using a

peer-to-peer lookup service,” in Proc. IPTPS, 2002.
[17] K. Park, V. Pai, L. Peterson, and Z. Wang, “CoDNS: Improving DNS

performance and reliability via cooperative lookups,” in Proc. 6th
Symposium on Operating Systems Design and Implementation, 2004.

[18] “Netcraft toolbar,” http://toolbar.netcraft.com, 2005.

