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On the Complexity of Cooperative Peer-to-Peer
Repair for Wireless Broadcasting

Gene Cheung, Member, IEEE, Danjue Li, Student Member, IEEE, and Chen-Nee Chuah, Senior Member, IEEE

Abstract— The well-known NAK implosion problem for wire-
less broadcast can be addressed by leveraging cooperative peer-
to-peer connectivity to repair corrupted data. This paper studies
the Cooperative Peer-to-Peer Repair (CPR) framework for mul-
timedia broadcast. We show that CPR can be formulated as an
optimization problem that minimizes the number of iterations it
takes to wirelessly disseminate a desired message from peers with
the content to peers without it. Complicating the problem are
transmission conflicts, where pre-specified sets of links cannot
simultaneously transmit due to interference. In this paper, we
formalize the CPR minimum delay problem and prove that it is
NP-hard.

Index Terms— Wireless broadcast, peer-to-peer, complexity.

I. INTRODUCTION

A NEW and promising distribution model for 3rd Genera-
tion Partnership Project (3GPP) networks is Multimedia

Broadcast Multicast Service (MBMS) [1], where a piece of
widely interested multimedia content (message) is broadcasted
to large groups of 3G clients listening collectively in a pre-
assigned broadcast channel. While it is clear that efficient
usage of network resources is a benefit, avoiding the NAK
implosion problem (a scenario where server is overwhelmed
by floods of individual retransmission requests from clients) is
a major reason why broadcasting servers typically do not per-
form retransmissions on request in the event of packet losses
due to wireless transmission failures. Even with the use of
Forward Error Correction (FEC) to correct predictable channel
noise, temporary wireless link failures are unavoidable, leaving
groups of clients without the desired message at a given time.

Fortunately, many modern wireless devices are multi-homed
and each contains multiple wireless interfaces, so that one
can connect to a wireless wide area network (WWAN), like
a 3G network, and to a wireless local area network (WLAN),
like a wireless ad-hoc peer-to-peer network, simultaneously
[2]. In such setting, a “have not” wireless peer can request
retransmission of a message from a neighboring “have” peer
listening to the same broadcast. Given a group of cooperative
wireless peers willing to repair neighbors’ dropped message,
the problem is: how to schedule rounds of retransmissions
within a group, so that the time required to complete repair
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Fig. 1. Example of connectivity graph for cooperative peer-to-peer repair.

to all peers is minimized? Care must be taken so that pre-
specified sets of interfering transmission links are not activated
simultaneously. We call this problem the Cooperative Peer-to-
Peer Repair problem (CPR).

In this paper, we present the following theoretical result:
CPR is NP-hard. We first formalize CPR as a discrete op-
timization problem in Section II. We then present the NP-
hardness proof for CPR in Section III. We provide concluding
remarks in Section IV.

II. COOPERATIVE PEER-TO-PEER REPAIR (CPR)

We formulate CPR as follows. A connected graph Θ,
modeling the connectivity of wireless peers in WLAN, has
a set of nodes N and a set of undirected links L. Links are
labeled from 0, . . . , |L|− 1, where link i connecting nodes m
and n is represented by i ↔ (m,n). At start time t = 0, each
node n ∈ N has color C0,n ∈ {0, 1}, where 0 (blue) means
node n is in need of the desired message, and 1 (white) means
the node has the message. As done in [3], a conflict matrix I
of dimension |L|∗ |L| dictates which links cannot be activated
at the same time due to interference; in particular, Ii,j = 1 if
link i and j cannot be activated simultaneously, and Ii,j = 0
otherwise. Matrix I is by definition symmetric. We assume I
has the unicast conflict property: assignments of 1’s and 0’s so
that two links stemming from the same node are in conflict.
This is in compliance with standard 802.11 MAC behavior for
unicast mode, where a node can be in communication with at
most one other node at the same time.

At each iteration t, we select links, each connecting a white
node to a blue node, such that no two selected links are in
conflict according to I. By next iteration t + 1, blue nodes
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Fig. 2. Example construction for NP-completeness proof for CPR.

of the selected links have received the desired message and
changed color to white. The optimization problem is: how to
select a set of non-conflicting links in each iteration, so that all
nodes are white in the minimum number of iterations? Figure
1 shows an example of connectivity graph Θ = {N ,L} with
initial coloring for CPR.

We write CPR mathematically as follows. Let S be a T ∗|L|
binary link selection matrix, where St,l = 1 if link l is selected
at iteration t and St,l = 0 otherwise, and T is the total number
of iterations. Let C be a T ∗ |N | binary color matrix where
Ct,n = 1 if node n is white at iteration t and Ct,n = 0
otherwise. Given the first row of C is initialized to the starting
colors of N , the optimization is:

minS,C row(S) s.t.
Ij,k = 0 ∀j, k | St,j = St,k = 1

Ct,m + Ct,n = 1 ∀l | St,l = 1, l ↔ (m, n)
Ct+1,m + Ct+1,n = 2 ∀l | St,l = 1, l ↔ (m, n)

Ct+1,n = Ct,n # ∃l | St,l = 1, l ↔ (m, n)∑
n

Crow(S),n = |N |

(1)

where row(S) is the number of rows in matrix S. The 1st

constraint in (1) states that no two links selected in the same
iteration t should be in conflict. The 2nd constraint states that
one and only one node of each selected link at iteration t
should be white. The 3rd constraint states that both nodes of
a selected link at iteration t should be white at iteration t+1.
The 4th constraint states that color of a node stays the same
at iteration t + 1 if no link connected to it was selected at
iteration t. The 5th constraint states that all nodes must be
white at iteration row(S).

We now present the NP-hardness proof for CPR.

III. PROOF OF NP-HARDNESS

We first recast CPR as a decision problem: is there a
schedule of non-conflicting links at each iteration, such that
all nodes can be whitened in κ iterations? The CPR decision
problem is obviously in NP; a solution (So,Co) can be
checked against constraints in (1), and row(So) against κ,
for feasibility in polynomial time.

We next show that the CPR decision problem is NP-
complete via polynomial transformation from a well-known
NP-complete problem Independent Set (IndS). The IndS deci-
sion problem can be stated1 as follows (pg.361 of [4]):

1Notice we adopt the terminology of nodes and links when referring to
CPR, and vertices and edges when referring to IndS to avoid confusion.

Given a graph G = (V, E) and an integer k, is there
a set I ⊂ V of k vertices such that no two vertices
in I are connected by an edge?

Figure 2a shows an IndS example with independent set {1, 3}.
We now describe a procedure to construct a CPR instance
from an arbitrary IndS instance, so that the output of the CPR
decision problem corresponds exactly to the decision in IndS,
and hence proving that CPR is at least as hard as IndS.

A. Construction of CPR Instance from IndS

We first construct a IndS conflict binary matrix J of size
|V|∗|V|, where Ji,j = 1 if ∃ei,j ∈ E and Ji,j = 0 otherwise. In
other words, Ji,j = 1 iff vertices i and j cannot be selected
to the same independent set because they are connected by
an edge. A IndS conflict matrix {Ji,j}, 0 ≤ i, j ≤ 3,
corresponding to the IndS instance in Figure 2a is:

J =




0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0



 (2)

We next construct a corresponding CPR instance with graph
Θ = (N ,L) and conflict matrix I. More specifically, we
construct a bipartite graph with |V| nodes on the left (Nl)
and k nodes on the right (Nr), so that Nl ∪ Nr = N . Nodes
on the left, each labeled n ∈ {0, . . . , |V| − 1}, are white, and
nodes on the right, each labeled m′ ∈ {0′, . . . , (k − 1)′}, are
blue. We draw a link from left to right for every pair of left-
node and right-node. We label a link l ∈ {0, 1, . . . , k|V| − 1}
connecting n ∈ Nl and m′ ∈ Nr as follows:

l = n ∗ k + m ↔ (n,m′) n ∈ Nl, m′ ∈ Nr (3)

The constructed CPR instance for our IndS example is shown
in Figure 2b. To complete the CPR instance, we construct a
CPR conflict matrix I of size k|V| ∗ k|V| from J as follows.
For 0 ≤ i, j ≤ k|V| − 1:

Ii,j =






1 if J% i
k &,% j

k & = 1

1 else if (
⌊

i
k

⌋
#=

⌊
j
k

⌋
) & (i mod k = j mod k)

1 else if (
⌊

i
k

⌋
=

⌊
j
k

⌋
) & (i #= j)

0 o.w.
(4)

where i mod k gives the integer remainder of i divided by k.
The CPR conflict matrix I corresponding to the IndS conflict

matrix J in (2) is as follows.

I =





0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 0 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 0





(5)

Given the constructed CPR instance, the corresponding
decision is: is there a schedule of non-conflicting links, such
that all blue nodes can be whitened in 1 iteration?
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B. Remarks

First, we show that the constructed CPR instance is of
polynomial size of the IndS instance. The node set N of
bipartite graph for CPR is of size |V| + k ≤ O(|V|). The
number of links is bounded by O(|V|2), and the size of the
CPR conflict matrix I is bounded by k2|V|2 ≤ O(|V|4). Hence
we conclude that the size of the constructed CPR instance is
O(|V|4), i.e., it is of polynomial size of the IndS instance.

Next, we show that the 1’s and 0’s assigned to I using (4)
satisfy the unicast conflict property. From link labeling (3), we
see that links stemming from the same left-node n but arriving
at different right-nodes are in conflict with each other due to
the 3rd if statement of (4). Similarly, from (3), we see that
links arriving at the same right-node m′ but stemming from
different left-nodes are also in conflict with each other due to
the 2nd if statement of (4). Since this covers all links, we
conclude that the constructed I satisfies the unicast conflict
property.

Finally, we discuss the intuition behind the construction
of the CPR instance. Each node ∈ Nl of CPR corresponds
one-to-one to a vertex ∈ V of IndS. Selecting one of k
links stemming from a node ∈ Nl of CPR means selecting
the corresponding vertex ∈ V of IndS into the independent
set. The 1st if statement in (4) prevents selection of links
stemming from two nodes representing vertices ∈ V that are
connected in G.

Each node ∈ Nr corresponds to a unique, successful
selection of an independent vertex ∈ V . We track to see if all k
nodes ∈ Nr can be whitened in 1 iteration. There is no under-
counting, since the unicast conflict property prevents joint
selection of links stemming from two nodes ∈ Nl going to
the same node ∈ Nr. There is also no over-counting, because
the unicast conflict property also prevents joint selection of
links stemming from the same node ∈ Nl going to different
nodes ∈ Nr.

We now state the proof formally as a theorem.
Theorem 1: The CPR decision problem is NP-complete.

Proof: We prove the theorem by showing that “yes” to
the constructed CPR instance implies “yes” to the original
IndS instance, and vice versa. Suppose the output of the
constructed CPR decision problem is “yes”. That means the
solution composes of exactly k non-conflicting links, originat-
ing from k distinct left-nodes ∈ Nl and terminating at all k
blue right-nodes ∈ Nr. We know there are exactly k selected
links, because all k blue right-nodes ∈ Nr are whitened in 1
iteration, and links terminating at the same right-node ∈ Nr

are conflicting due to the unicast conflict property. We know

these k links are originated from k distinct left-nodes because
links originated from the same left-node ∈ Nl are conflicting,
again due to the unicast conflict property. Finally, these distinct
k left-nodes ∈ Nl of the k selected links must correspond to
k independent vertices ∈ V in IndS due to (3) and 1st if
statement of (4). Therefore, we conclude that “yes” to the
CPR decision problem corresponds to “yes” in the original
IndS decision problem.

Suppose there is an independent set {vo
0 < . . . < vo

k−1} ⊂
V of size k in the IndS instance. We can correspondingly select
a set of k non-conflicting links ∈ L, where for each vo

i , we
pick link vo

i ∗ k + i. First, we know each of these k links
connect to a different right-node ∈ Nr due to (3). Second,
we know each of these k links connects to a different left-
node ∈ Nl, again due to (3). Hence, given each of these k
links has a different left-node and a different right-node, they
do not violate unicast conflicts (2nd and 3rd if statements
in (4)). They also do not conflict due to 1st if statement of
(4), since vertices vo

i ’s, where vo
i =

⌊
vo

i ∗k+i
k

⌋
, do not conflict

in G by assumption. Therefore, this set of k non-conflicting
links ∈ L converts all k blue nodes ∈ Nr in 1 iteration. We
can now conclude that since both directions of the implication
have been proven, Theorem 1 is also proven.

Corollary 1: The CPR optimization problem is NP-hard.
Proof: Given the CPR decision is NP-complete as stated

in Theorem 1, it follows by definition of NP-hardness [4] that
the corresponding optimization is NP-hard.

IV. CONCLUSIONS

In this paper, we studied the Cooperative Peer-to-Peer
Repair (CPR) framework for multimedia broadcast. We for-
mulated CPR as an optimization problem that minimizes
the number of iterations it takes to wirelessly disseminate a
desired message from peers with the content to peers without
it. We proved that CPR is NP-hard.
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