
BASS: BitTorrent Assisted Streaming System for Video-on-Demand

Chris Dana
cdana@ece.ucdavis.edu

Danjue Li
dli@ucdavis.edu

David Harrison
dosirrah@gmail.com

Chen-Nee Chuah
chuah@ece.ucdavis.edu

Abstract— This paper introduces a hybrid server/P2P stream-
ing system called BitTorrent-Assisted Streaming System (BASS)
for large-scale Video-on-Demand (VoD) services. By distributing
the load among P2P connections as well as maintaining active
server connections, BASS can increase the system scalability
while decreasing media playout wait times. To analyze the benefits
of BASS, we examine torrent trace data collected in the first week
of distribution for Fedora Core 3 and develop an empirical model
of BitTorrent client performance. Based on this, we run trace-
based simulations to evaluate BASS and show that it is more
scalable than current unicast solutions and can greatly decrease
the average waiting time before playback.

I. INTRODUCTION AND RELATED WORK

With the increasing growth of consumer broadband, mul-
timedia applications such as video-on-demand (VoD) have
become accessible to a larger audience than ever before.
Current VoD services mainly rely on content distribution
networks (CDNs) and local streaming proxies to increase
system scalability and shorten the delay perceived by end
users. However, system performance still deteriorates rapidly
as the number of clients increases due to the current server-
client service model. When a flash crowd appears, the server
can be easily overloaded.

To solve this problem and increase scalability, a number
of end-system multicast (ESM) and non-multicast peer-to-
peer (P2P) video streaming systems have been developed. For
live media streaming, ESM is favorable. One such system,
CoopNet [1], builds a multicast tree by establishing parent-
child relationships between end systems that govern how data
is routed. Castro et al. proposed Splitstream [2], which is built
upon a distributed hash table (DHT) based overlay network
called Pastry [3]. Splitstream also builds multicast trees but is
decentralized and highly scalable.

The peer-to-peer concept has also been applied to more
general video-on-demand services as well. To the best of
our knowledge, Chaining [4] is the first work to do this.
In Chaining, each client caches a small portion of recently
received video content. Newly arriving clients can stream from
an earlier client as long as the earlier client still has the first
block of the video cached. Pinho et al. introduced a scalable
VoD system called GloVE [5], where active clients cooperate
to create a sharable video cache as the primary source of video
content for subsequent client requests. Hefeeda et al. [6] pro-
posed a P2P media streaming system called PROMISE, which
relies on an application level P2P service called CollectCast

This work is supported in part by the UC Micro 04-05 program with
matching funds from Hewlett Packard.

to select peers and dynamically adapt to network fluctuations
and peer failures. A recent work on P2P streaming called
Coolstreaming [7] appears similar to BitTorrent at first glance.
However, rather than being tracker-based, Coolstreaming uses
a gossip protocol to disemminate lists of peers. In addition,
it has very different internal policies to cope with the strict
deadlines that video streaming imposes. However, almost all
past P2P-based streaming systems completely rely on peer
connections, which make the system vulnerable to peer or
connection failures. In this paper, we combine P2P techniques
with the current server-client streaming model to build a
hybrid system that is both scalable and robust.

Specifically, the contributions of this work are:

• First, we propose a novel streaming system, BitTorrent
Assisted Streaming System (BASS) for VoD services,
where we add the use of an external streaming server to a
slightly modified BitTorrent. Clients can simultaneously
stream from the media server as well as each other
via BitTorrent P2P connections. By maintaining these
connections, we can reduce the aggregate bandwidth used
by the media server and decrease client waiting times.

• Second, by analyzing the BitTorrent traces collected in
the first week of distribution for Fedora Core 3 [8] distri-
bution hosted at linux.duke.edu1, we present a method for
modeling the download performance of a BitTorrent peer.
To this end, we extend previous analysis of BitTorrent
[9] by focusing on the evolution of the download rate
distribution over time. Based on this, we derive a simple
model for the downlink throughput of a BitTorrent client.

• Third, we define the hybrid server/peer streaming process
in BASS as a delay-restricted-file-sharing (DRFS) prob-
lem. By integrating the BitTorrent trace analysis model,
we design trace-based simulations to evaluate the BASS
performance and present our simulation results.

The remaining parts of this paper are structured as follows.
Section II presents BASS. Section III introduces the trace
based simulation studies to evaluate BASS performance and
presents our simulation results. We will summarize our work
and discuss future research directions in Section IV.

II. BASS: BITTORRENT ASSISTED STREAMING SYSTEM

In this section, we present our proposed hybrid video
streaming system. Figure 1(a) illustrates BASS for VoD ser-
vices, where clients can stream from each other via BitTorrent
P2P connections and media servers simultaneously.

1We are grateful to Seth Vidal for making this data available to us.

The traditional server-client solution to multimedia disti-
bution is simply to send a separate copy to each client that
requests the file. The bandwidth usage at the server scales
linearly with the number of concurrent users and a flash
crowd can quickly overwhelm the system. For general file
distribution, BitTorrent targets this problem by leveraging the
upstream bandwidth of the clients. It splits a file into many
pieces and sends different pieces to different clients, allowing
them to trade pieces amongst each other. Clients that have
completed the file and are only uploading are known as seeders
and those that are still swapping pieces are leechers. BitTorrent
uses a tracker program running on a server (as opposed to
a gossip protocol) to disseminate lists of peers. To govern
how pieces of the file are requested and swapped amongst
peers, it follows rarest-piece-first and tit-for-tat policies [10],
respectively. In rarest-piece-first, the client requests a piece
based on the number of copies it sees available and chooses
the least common one. In tit-for-tat, a leecher reciprocates to
other leechers that send it pieces by giving higher priority to
their requests. The interested reader is directed to a detailed
explanation of the BitTorrent protocol [11].

For multimedia streaming, end-system multicast can suffer
from degradation in quality as the tree depth increases. Lossy
wireless access points and congestion at access routers (caus-
ing delays or tail drops) become greater issues when the data
has to traverse a greater number of hops. In addition, there
is no incentive for clients to contribute upstream bandwidth
other than good faith. BitTorrent suffers from neither of these,
but due to the rarest-piece first policy, is wholly inappropriate
for multimedia streaming, which requires in-order reception
of data. Simply forcing BitTorrent to request pieces in-order
would be similarly disasterous because then clients would only
contain subsets of each others data and tit-for-tat would fail.

Pi: Peers in BASS

…

P0

P1

P2

Pn-1

Pn

Fi0

Fi1 Fi2

Fin

Fin-1

Media server

Tracker server

File Fi

Fi0 Fi1 Fi2 Fin

……
Fi0 Fi1 Fi2 Fin

Playout buffer

(a)

(b)

From Media Server: ()SR t

From BitTorrent Peers: ()BR t

0 ()R t

BASS Storage

)(tRe
B

Fig. 1. BASS: (a) System Overview, (b) Client Model

Instead of trying to modify BitTorrent for streaming (which
it was not designed to do), BASS augments it with an
external media server (Figure 1a), with the only modification
to BitTorrent being that it does not download any data prior
to the current playback point. It is allowed to use the rarest-
piece-first (subject to the previous condition) and tit-for-tat
policies. As shown in Figure 1b, data from BitTorrent is held
in local storage until it is needed. From the media server,
BASS downloads pieces in-order, skipping over pieces that
have already been downloaded by BitTorrent, or are currently
in the process of being downloaded and are expected to finish
before their playout deadline arrives. If the media server were
altered to limit the amount of data a client is allowed to stream
from it, BASS could also encourage users to participate in
distribution using the tit-for-tat policy.

III. TRACE-BASED SIMULATION STUDY

In this section, we will present the BitTorrent trace analysis,
discuss how we simulate BASS, and show trace-based sim-
ulation results that compare BASS performance to existing
server-based solutions.

A. BitTorrent Trace Analysis

Due to its popularity, BitTorrent has led to a number of
papers analyzing [12], [13] and modeling [14] its performance.
Our work falls in between the two categories, analyzing data to
generate a simple model for the download performance. To this
end, we were able to obtain tracker logfile for the first week
of release of Fedora Core 3 (FC3), an open-source operating
system. The logfile actually contains data for six releases of
FC3 (three binaries and three sources), but we focus on the
single, most popular one, accounting for 37% of the total data.

Since some clients send incorrect information to the tracker,
we must first sanitize the data by removing entries for
clients that are obviously incorrectly configured or otherwise
misbehaving. Examples include entries with negative bytes
downloaded or uploaded, multiple instantaneous resets, and
misleading (or missing) event flags among others. We also fo-
cus our analysis on single-session downloaders, that is, clients
who download the entire file in one shot, since this corresponds
more closely to user behavior for streaming media. For each
client we record a series of timestart < t < timestop

intervals and calculate the average download rate r̄down on
that interval as r̄down = Bstop−Bstart

tstop−tstart
, where Bstart and Bstop

are the bytes downloaded up to tstart and tstop, respectively.
We then generate the download density every five minutes,
corresponding to the default interval of time that clients wait
to request more peers from the tracker server.

Using the tracker logfile, we determine the average down-
load rate for each peer-tracker intercommunication interval.
We apply the Freedman-Diaconis rule that sets bin width
w = 2IQR

K1/3 , where IQR is the interquartile range of the samples
and K is the number of samples. Scaling to make the area

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

2

4

6

8
x 10

−6

Download Speed (Bytes/second)

N
um

be
r

of
 U

se
rs

0 1 2 3 4 5 6

x 10
5

0

0.05

0.1

A
rr

iv
al

 R
at

e
(u

se
rs

/s
ec

on
d)

Time (s)

Arrival Rate
Exponential Fit

Logfile Data
Exponential PDF µ = 132 KBps

Fig. 2. (top) Typical density of download rates with and exponential fit
(bottom) BitTorrent client mean arrival rate across time

integrate to unity yields an exponential probability density
function with mean µ equal to 132KBps (Figure 2 (top)).

Another important aspect of the system we examine is the
arrival rates of users across time. We find that the average
arrival rate is well approximated by a double-exponential
curve. In the case of our tracker logfile, we found that

λ(t) = .3081e−0.00004287t + .0397e−0.000002261t

Given the average arrival rates and download rates over time,
as well as their distributions, we construct a purely leecher-
side model for BitTorrent performance.

B. Simulating BASS

Using the results of our trace analysis, we can simulate
BASS for various performance metrics. We begin by splitting
the file into windows of length α seconds, which will be the
minimum unit over which we calculate contributions from the
various sources. Another window is β, which denotes the range
of the file over which BitTorrent operates. We set β equal to
the length of the entire file both for simplicity and because
it allows BitTorrent to achieve the best possible performance.
Our major assumption is that the probability of getting future
pieces is uniform and thus we spread the information gained
from BitTorrent evenly over β (Figure 3). For a system where
the number of BASS users is small compared to the number
of BitTorrent users, it is reasonable that this assumption holds
due to the rarest-piece-first policy. If the majority of clients are
using BASS, then the in-order downloading from the media
server would most likely skew the distribution of pieces among
peers and rarest-piece-first might not be able to compensate
to make our assumption hold. For now we assume there are
many fewer BASS users than BitTorrent users and leave the
other case to future work.

To examine the performance over time, we use the para-
meters gleaned from trace analysis to run a simple queueing

Fig. 3. Diagram of data handling in the simulation. In general α ≤ β ≤
filelength. We use β = filelength

system simulation. Clients arrivals are Poisson with the time-
varying parameter shown in Figure 2 (bottom). Upon arrival
they are assigned a rate from BitTorrent according to the
exponential distribution in Figure 2 with a constant mean. This
rate is maintained until the client finishes its download, and
in our case, no client leaves before it has finished.

C. Simulation Results

We begin by looking at the bandwidth required to support
streaming for a 173 MB, 22 minute file (with a resulting
average playback bitrate of 131 KBps). The server-only case
requires an average of 131 kBps per user while BASS requires
87 kBps, achieving a savings of 34%. At the beginning of
the simulation, during the heaviest client arrival rate, BASS
performance is similar to the server-only case. However, once
the arrival rate has subsided, BASS scales linearly with the
number of users in the system.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

Number of Users

M
ed

ia
 S

er
ve

r
B

an
dw

id
th

 U
se

 (
B

/s
)

Server−only (slope = 131 kBps)

BASS (data points)

BASS (linear fit, slope = 87 kBps)

flash crowd

Fig. 4. Required throughput as a function of concurrent streaming clients.

Next we look at the time clients must wait before playback
if they are given a certain bandwidth guarantee by the media

server (Figure 5). For this metric we let the server provide
bandwidth up to the playback bitrate. Because we use an ex-
ponential distribution of download rates from our trace-based
model, the possibility exists that the BitTorrent download rate
can be arbitrarily close to zero. In order to determine when
pieces are successfully downloaded, we divide the number of
bytes by this rate, the result being a random variable that does
not easily (if at all) converge to a finite mean. To avoid this
problem, we lower-bound the rate to 5 KBps, which greatly
reduces convergence time. Using only BitTorrent (Figure 6),
we must wait a constant amount of time since the possibility
exists that the final piece downloaded is the first playout piece
in the file. In contrast, for the server-only case, all of the pieces
are downloaded in order and the wait time simply depends
on the ratio of the download rate to the playback bitrate. As
expected, BASS behaves as a mixture of the two, with the
wait time upper-bounded by the Bit-Torrent only case and
then decreasing in a curve similar to the server-only case. We
see that if half of the playback bitrate is guaranteed, then the
average wait time for BASS is 27% of the wait time for server-
only and 10% of that for BitTorrent only.

IV. CONCLUSION AND FUTURE WORK

We have proposed a hybrid server/P2P streaming system,
called BitTorrent-Assisted Streaming System (BASS), for
large-scale Video on Demand (VoD) service. By analyzing the
torrent trace data collected in the first week of the Fedora Core
3 release, we develop a simple model for evaluating BitTorrent
client performance and integrate that into simulations to evalu-
ate BASS. Simulation studies show that BASS can efficiently
reduce the streaming load on the media server, and provide
much lower initial streaming delay than relying solely upon the
server. In the future, we will look at other performance metrics
such as the probability of successfully receiving a stream given
an overall cap on the media server (versus individual rate
guarantees). We also plan to implement BASS and compare
its performance both simulation and analytical models.

REFERENCES

[1] P. Chou V. Padmanabhan, H. Wang and K. Sripanidkulchai, “Distributing
streaming media content using cooperative networking,” May 2002.

[2] A-M. Kermarrec A. Nandi A. Rowstron M. Castro, P. Druschel and
A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” October 2003.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” .

[4] Simon Sheu, Kien A. Hua, and Wallapak Tavanapong, “Chaining: A
generalized technique for video-on-demand systems,” in ICMCS, June
1997.

[5] L. Pinho, G. Amorim, and E. Ishikawa, “Glove: A distributed envi-
ronment for low cost scalable vod systems,” in SCAB-PAD, October
2002.

[6] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “Promise:
Peer-to-peer media streaming using collectcast,” in ACM International
Conference on Multimedia, Berkeley, California, USA, Nov. 2003.

[7] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Donet/coolstreaming: A data-
driven overlay network for live media streaming,” in IEEE INFOCOM,
2005.

[8] “Fedora Core 3,” http://fedora.redhat.com/.

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

8000

Guaranteed Rate Per User From Server (KBytes/s)

W
ai

tin
g

T
im

e
U

nt
il

P
la

yo
ut

 (
s)

Average Time Until Playback
Individual Data Points

Fig. 5. Client waiting time given a certain media server guarantee

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

12000

Guaranteed Rate Per User From Server (KBytes/s)

A
vg

 T
im

e
U

nt
il

P
la

yb
ac

k
(s

)

BASS
Server Only
BitTorrent Only

Fig. 6. Comparison of avg. waiting time for BASS, server, and BT only

[9] C. Dana and C-N. Chuah, “Perceiving methods for the file distribution
performance of bitTorrent,” Tech. Rep. ECE-CE-2004-2, University of
California, Davis, August 2004.

[10] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer Systems, May 2003.

[11] “Bittorrent protocol,” http://www.bittorrent.com/protocol.html.
[12] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and

L. Garces-Erice, “Dissecting bittorrent: Five months in a torrents
lifetime,” in PAM Workshop, April 2004.

[13] D.H.J. Epema H.J. Sips J.A. Pouwelse, P. Garbacki, “The bittorrent p2p
file-sharing system: Measurements and analysis,” February 2005.

[14] X. Yang and G. Veciana, “Service capacity of peer to peer networks,”
in IEEE INFOCOM, March 2004.

