
IEEE SIGNAL PROCESSING MAGAZINE [38] NOVEMBER 2009 1053-5888/09/$26.00©2009IEEE

 Digital Object Identifier 10.1109/MSP.2009.934113

Trends in Multicore
DSP Platforms

[Lina J. Karam, Ismail AlKamal, Alan Gatherer,

 Gene A. Frantz, David V. Anderson, and Brian L. Evans]

M
ulticore digital signal processors
(DSPs) have gained significant
importance in recent years due to
the emergence of data-intensive
applications, such as video and

high-speed Internet browsing on mobile devices
that demand increased computational perfor-
mance but lower cost and power consumption.
Multicore platforms allow manufacturers to pro-
duce smaller boards while simplifying board layout
and routing, lowering power consumption and cost,
and maintaining programmability.

 Embedded processing has been dealing with mul-
ticore on a board, or in a system, for over a decade.
Until recently, size limitations have kept the number of
cores per chip to one, two, or four but, more recently, the
shrink in feature size from new semiconductor processes has
allowed single-chip DSPs to become multicore with reasonable
on-chip memory and input/output (I/O), while still keeping the
die within the size range required for good yield. Power and
yield constraints as well as the need for large on-chip memory
have further driven these multicore DSPs to become a system-
on-chip (SoC). Beyond the power reduction, SoCs also lead to
overall cost reduction because they simplify board design by
minimizing the number of components required.

The move to multicore systems in the embedded space is
as much about integration of components to reduce cost and
power as it is about the development of very high-performance
systems. While power limitations and the need for low-power

devices may be obvious in mobile and hand-held devices, there
are stringent constraints for nonbattery powered systems as
well. Cooling in such systems is generally restricted to forced
air only, and there is a strong desire to avoid the mechanical
liability of a fan if possible. This puts multicore devices under
a serious hot spot constraint. Although a fan-cooled rack of
boards may be able to dissipate hundreds of watts (an ATCA
carrier card can dissipate up to 200 W), the density of parts on
the board will start to suffer when any individual chip power
rises above roughly 10 W. Hence, the cheapest solution at the
board level is to restrict the power dissipation to around 10 W
per chip and then pack these chips densely on the board.

[Examining architectures, programming models,
 software tools, emerging applications, and challenges]

© PHOTO F/X2

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [39] NOVEMBER 2009

The introduction of multi-
core DSP architectures pres-
ents several challenges in
hardware architectures, mem-
ory organization and manage-
ment, operating systems,
platform software, compiler designs, and tooling for code
development and debug. This article presents an overview of
existing multicore DSP architectures as well as programming
models, software tools, emerging applications, challenges, and
future trends of multicore DSPs.

HISTORICAL PERSPECTIVES:
FROM SINGLE CORE TO MULTICORE
The concept of a DSP came about in the mid-1970s. Its roots
were nurtured in the soil of a growing number of university
research centers creating a body of theory on how to solve real-
world problems using a digital computer. This research was aca-
demic in nature and was not considered practical since it required
the use of state-of-the-art computers and was not possible to do
in real time.

It was a few years later that a toy by the name of Speak & Spell
was created using a single integrated circuit to synthesize speech.
This device made the following two bold statements:

digital signal processing can be done in real time ■

DSPs can be cost effective. ■

This began the era of the DSP. So, what made a DSP device dif-
ferent from other microprocessors? Simply put, it was the DSP’s
attention to doing complex math while guaranteeing real-time
processing. Architectural details such as dual/multiple data buses,
logic to prevent over/underflow, single cycle complex instructions,
hardware multiplier, little or no capability to interrupt, and special
instructions to handle signal processing constructs gave the DSP
its ability to do the required complex math in real time.

“If I can’t do it with one DSP, why not use two of them?” That
is the answer obtained from many customers after the introduc-
tion of DSPs with enough performance to change the designer’s
mind set from “how do I squeeze my algorithm into this device”
to “guess what, when I divide the performance that I need to do
this task by the performance of a DSP, the number is small.” The
first encounter with this was a year or so after Texas Instruments
(TI) introduced the first floating-point DSP, called the
TMS320C30. It had significantly more performance than its
fixed-point predecessors. TI took on the task of seeing what cus-
tomers were doing with this new DSP that they weren’t doing
with previous ones. The significant finding was that none of the
customers were using only one device in their system. They were
using multiple DSPs working together to create their solutions.

 As the performance of the DSPs increased, more sophisticated
applications began to be handled in real time. So, it went from
voice to audio to image to video processing. Figure 1 depicts this
evolution. The four lines in Figure 1 represent the performance
increases of DSPs in terms of instruction cycles per sample period.

For example, the sample rate for voice is 8 kHz. Initial
DSPs allowed for about 625 instructions per sample period,

barely enough for transcoding.
As higher performance devices
began to be available, more
instruction cycles became
available each sample period
to do more sophisticated tasks.

In the case of voice, algorithms such as noise cancellation,
echo cancellation, and voice band modems were able to be
added as a result of the increased performance made avail-
able. Figure 2 depicts how this increase in performance was
more the result of multiprocessing rather than higher perfor-
mance single processing elements. Because digital signal pro-
cessing algorithms are multiply-accumulate (MAC) intensive,
Figure 2 shows how, by adding multipliers to the architec-
ture, the performance followed an aggressive growth rate.
Adding multiplier units is the simplest form of doing multi-
processing in a DSP device.

For TI, the obvious next step was to architect the next genera-
tion DSPs with the communications ports necessary to matrix
multiple DSPs together in the same system. That device was creat-
ed and introduced as the TMS320C40. And, as one might suspect,
a follow-up (fixed-point) device was created with multiple DSPs on
one device under the management of a reduced instruction set
computer (RISC) processor, the TMS320C80.

The proliferation of computationally demanding applications
drove the need to integrate multiple processing elements on the
same piece of silicon. This lead to a whole new world of architec-
tural options: homogeneous multiprocessing, heterogeneous

[FIG1] Four examples of the increase of instruction cycles per
sample period. It appears that the DSP becomes useful when
it can perform a minimum of 100 instructions per sample
period. Note that for a video system the pixel is used in
place of a sample.

10,000

1,000

HD Pixel,

120 Megapixels/s

SD Pixel,

12 Megapixels/s

Audio,

48,000 Samples/s

Telecom,

8,000 Samples/s

100

10

1
9
8
2

1
9
8
4

1
9
8
6

1
9
8
8

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

In
s
tr

u
c
ti
o
n
 C

y
c
le

s
 P

e
r

S
a
m

p
le

 P
e
ri

o
d

1

Year

EMBEDDED PROCESSING HAS BEEN
DEALING WITH MULTICORE ON A BOARD,
OR IN A SYSTEM, FOR OVER A DECADE.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [40] NOVEMBER 2009

multiprocessing, processors versus accelerators, programmable
versus fixed function, a mix of general-purpose processors and
DSPs, or system in a package versus SoC integration. And then
there is Amdahl’s Law that must be introduced to the mix [1],
[2]. In addition, one needs to consider how the architecture dif-
fers for high-performance applications versus long battery life
portable applications.

ARCHITECTURES OF MULTICORE DSPs
In 2008, 68% of all shipped DSP processors were used in the
wireless sector, especially in mobile handsets and base sta-
tions; so, naturally, development in wireless infrastructure and
applications is the current driving force behind the evolution
of DSP processors and their architectures [3]. The emergence
of new applications such as mobile TV and high-speed Internet
browsing on mobile devices greatly increased the demand for
more processing power while lowering cost and power con-
sumption. Therefore, multicore DSP architectures were estab-
lished as a viable solution for high-performance applications
in packet telephony, third generation (3G) wireless infrastruc-
ture and worldwide interoperability for microwave access
(WiMAX) [4]. This shift to multicore shows significant im -
provements in performance, power consumption, and space
requirements while lowering costs and clocking frequencies.
Figure 3 illustrates a typical multicore DSP platform.

Current state-of-the-art multicore DSP platforms can be
defined by the type of cores available in the chip and include
homogeneous and heterogeneous architectures. A homoge-
neous multicore DSP architecture consists of cores that are
from the same type, meaning that all cores in the die are DSP
processors. In contrast, heterogeneous architectures contain
different types of cores. This can be a collection of DSPs with
general-purpose processors (GPPs), graphics processing units
(GPUs), or microcontroller units (MCUs). Another classification
of multicore DSP processors is by the type of interconnects
between the cores.

More details on the types of interconnect being used in multi-
core DSPs as well as the memory hierarchy of these multiple
cores are presented below, followed by an overview of the latest
multicore chips. A brief discussion on performance analysis is
also included.

[FIG3] Typical multicore DSP platform.

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2/L3 Shared Memory

DMA

Peripherals
Debugging

and On-Chip Emulation

DSP Core

Program

Unit

Debugging

JTAG/EOnCE

Power
Management

Address Unit

Address
Registers

Data Unit

Data ALU
Registers

Data ALUs

DSP

Subsystem

Address
ALUs

L1

Data
L1

Data

L1

Data
L1

Data
L1

Data

L1

Data

L1

Program
L1

Program
L1

Program

L1

Program
L1

Program

L1

Program

DSP

Core

DSP

Core

DSP

Core

DSP

Core

DSP

Core

DSP

Core

[FIG2] Four generations of DSPs show how multiprocessing has
more effect on performance than clock rate. The dotted lines
correspond to the increase in performance due to clock increases
within an architecture. The solid line shows the increase due to
both the clock increase and the parallel processing.

10,000

1,000

C64x+ Eight MAC/Cycle
C64x+ Four MAC/Cycle
C62x+ Two MAC/Cycle
C1x/2x+ One MAC/Cycle

100

10

1
9
8
2

1
9
8
4

1
9
8
6

1
9
8
8

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

M
ill

io
n
 M

u
lt
ip

ly
 A

c
c
u
m

u
la

te
/s

 (
M

M
A

C
/s

)

1

Year

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [41] NOVEMBER 2009

INTERCONNECT AND
MEMORY ORGANIZATION
As shown in Figure 4, multiple DSP cores
can be connected together through a
hierarchical or mesh topology. In hierar-
chical interconnected multicore DSP
platforms, data transfers between cores
are performed through one or more
switching units. To scale these architec-
tures, a hierarchy of switches needs to be
planned. Central processing units (CPUs)
that need to communicate with low
latency and high bandwidth will be
placed close together on a shared switch
and will have low latency access to each
others’ memory. Switches will be connected together to allow
more distant CPUs to communicate with longer latency.
Communication is done by memory transfer between the
memories associated with the CPUs. Memory can be shared
between CPUs or be local to a CPU. The most prominent type
of memory architecture makes use of Level 1 (L1) local memo-
ry dedicated to each core and Level 2 (L2), which can be dedi-
cated or shared between the cores as well as Level 3 (L3)
internal or external shared memory. If local, data is moved off
that memory to another local memory using a non-CPU block
in charge of block memory transfers, usually called direct
memory access (DMA). The memory map of such a system can
become quite complex and caches are often used to make the
memory look “flat” to the programmer. L1, L2, and even L3
caches can be used to automatically move data around the
memory hierarchy without explicit knowledge of this move-
ment in the program. This simplifies and makes more portable
the software written for such systems but comes at the price of
uncertainty in the time a task needs to complete because of
uncertainty in the number of cache misses [5].

In a mesh network [6], [7], the DSP processors are orga-
nized in a two-dimensional (2-D) array of nodes. The nodes are
connected through a network of buses and multiple simple
switching units. The cores are locally connected with their
“north,” “south,” “east,” and “west” neighbors. Memory is gen-
erally local, though a single node might have a cache hierarchy.
This architecture allows multicore DSP processors to scale to
large numbers without increasing the complexity of the buses
or switching units. However, the programmer generally has to

write code that is aware of the local nature of the CPU. Explicit
message passing is often used to describe data movement.

Multicore DSP platforms can also be categorized as sym-
metric multiprocessing (SMP) platforms and asymmetric mul-
tiprocessing (AMP) platforms. In an SMP platform, a given
task can be assigned to any of the cores without affecting the
performance in terms of latency. In an AMP platform, the
placement of a task can affect the latency, giving an opportu-
nity to optimize the performance by optimizing the placement
of tasks. This optimization comes at the expense of an
increased programming complexity since the programmer has
to deal with both space (task assignment to multiple cores)
and time (task scheduling). For example, the mesh network
architecture of Figure 4 is AMP since placing dependent tasks
that need to heavily communicate in neighboring processors
will significantly reduce the latency. In contrast, in a hierar-
chical interconnected architecture, in which the cores mostly
communicate by means of a shared L2/L3 memory and have
to cache data from the shared memory, the tasks can be
assigned to any of the cores without significantly affecting the
latency. SMP platforms are easy to program but can result in a
much increased latency as compared to AMP platforms.

EXISTING VENDOR-SPECIFIC
MULTICORE DSP PLATFORMS
Several vendors manufacture multicore DSP platforms such as TI
[8], Freescale [9], picoChip [10], Tilera [11], and Sandbridge [12],
[13]. Table 1 provides an overview of a number of these multicore
DSP chips.

[FIG4] Interconnect types of (a) hierarchical network and (b) mesh network multicore
DSP architectures.

DSP DSP DSP DSP DSP

s s s

s s s

s s s

DSP DSP DSP

DSP DSP DSP DSP

DSP DSP DSP DSP

DSP DSP DSP DSP

DMADMA

DMA

(a) (b)

DMADMA

Switch Switch

Switch

[TABLE 1] MULTICORE DSP PLATFORMS.

TI [8] FREESCALE [9] PICOCHIP [10] TILERA [11] SANDBRIDGE [12], [13]
PROCESSOR TNETV3020 MSC8156 PC205 TILE64 SB3500
ARCHITECTURE HOMOGENEOUS HOMOGENEOUS HETEROGENEOUS HOMOGENEOUS HETEROGENEOUS
NUMBER OF CORES SIX DSPS SIX DSPS 248 DSPS AND 1 GPP 64 DSPS THREE DSPS AND 1 GPP
INTERCONNECT
TOPOLOGY

HIERARCHICAL HIERARCHICAL MESH MESH HIERARCHICAL

APPLICATIONS WIRELESS
VIDEO
VOIP

WIRELESS WIRELESS WIRELESS
NETWORKING
VIDEO

WIRELESS

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [42] NOVEMBER 2009

TI has a number of homogeneous and heterogeneous multi-
core DSP platforms, all of which are based on the hierarchal-in-
terconnect architecture. One of the latest platforms is the
TNETV3020 (Figure 5), which is optimized for high-performance
voice and video applications in wireless communications infra-
structure [8]. The platform contains six TMS320C64x1 DSP
cores each capable of running at 500 MHz and consumes 3.8 W of
power. TI also has a number of other homogeneous multicore
DSPs, such as the TMS320TCI6488, which has three 1 GHz
C64x1 cores and the older TNETV3010, which contains six
TMS320C55x cores, as well as the TMS320VC5420/21/41 DSP
platforms with dual and quad TMS320VC54x DSP cores.

Freescale’s multicore DSP devices are based on the StarCore
140, 3400, and 3850 DSP subsystems that are included in the
MSC8112 (two SC140 DSP cores), MSC8144E (four SC3400
DSP cores), and its latest MSC8156 DSP chip (Figure 6), which
contains six SC3850 DSP cores targeted for 3G-long-term evo-
lution (LTE), WiMAX, 3GPP/3GPP2 and time division synchro-
nous code division multiple access (TD-SCDMA) applications
[9]. The device is based on a homogeneous hierarchical inter-
connect architecture with chip level arbitration and switching
system (CLASS).

PicoChip manufactures high-performance multicore DSP
devices that are based on both heterogeneous (PC205) and
homogeneous (PC203) mesh interconnect architectures. The
PC205 (Figure 7) was taken as an example of these multicore

DSPs [10]. The two building blocks of the PC205 device are
an ARM926EJ-S microprocessor and the picoArray. The
picoArray consists of 248 VLIW DSP processors connected
together in a 2-D array as shown in Figure 8. Each processor
has dedicated instruction and data memory as well as access
to on-chip and external memory. The ARM926EJ-S used for
control functions is a 32-b RISC processor. Some of the
PC205 applications are in high-speed wireless data communi-
cation standards for metropolitan area networks (WiMAX)
and cellular networks [high-speed downlink packet access
(HSDPA) and wideband code division multiple access
(WCDMA)], as well as in the implementation of advanced
wireless protocols.

Tilera manufactures the TILE64, TILEPro36, and TILEPro64
multicore DSP processors [11]. These are based on a highly
scalable homogeneous mesh interconnect architecture.

The TILE64 family features 64 identical processor cores
(tiles) interconnected using a mesh network of buses (Fig-
ure 9). Each tile contains a processor, L1 and L2 cache memo-
ry, and a nonblocking switch that connects each tile to the
mesh. The tiles are organized in an 8 3 8 grid of identical gen-
eral processor cores and the device contains 5 MB of on-chip
cache. The operating frequencies of the chip range from 500–
866 MHz and its power consumption ranges from 15 to 22 W.
Its main target applications are advanced networking, digital
video, and telecom.

[FIG5] Texas instruments TNETV3020 multicore DSP processor.

C64x+

Core

C64x+

Core

C64x+

Core

C64x+

Core

C64x+

Core

C64x+

Core

L1

Data

L1

Data

L1

Data

L1

Data

L1

Data

L1

Data

L1

Program

L1

Program

L1

Program

L1

Program

L1

Program

L1

Program

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L3 Shared Memory

EDMA 3.0 and Switch Fabric

GPIO PLL I2C

Timers Others
Boot
ROM

HPI Utopia II TSIP
DDR-2

EMIF

Serial

Rapid IO

10/100/1G

Ethernet

ROM Codes: AMR,

EFR, FR G.729AB,

G726,WB-AMR

To L1 Program Memory

C64x+ CPU

Instruction Fetch

SPLOOP Buffer

16/32-b Instruction Dispatch

Instruction Decode

Data Path 2Data Path 1

L1 S1 M1 D1 L2 S2 M2 D2

A Register File B Register File

To L1 Data Memory Controller

6464

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [43] NOVEMBER 2009

SandBridge manufactures multicore heterogeneous DSP
chips intended for software-defined radio applications. The
SB3011 includes four DSPs each running at a minimum of
600 MHz at 0.9 V. It can execute up to 32 independent
instruction streams while issuing vector operations for each
stream using an SIMD datapath. An ARM926EJ-S processor
with speeds up to 300 MHz implements all necessary I/O
devices in a smart phone and runs Linux OS. The kernel has
been designed to use the POSIX pthreads open standard [14]
thus providing a cross-platform library compatible with a
number of operating systems (Unix,
Linux, and Windows). The platform can
be programmed in a number of high-
level languages including C, C11, or
Java [12], [13].

MULTICORE DSP PLATFORM
PERFORMANCE ANALYSIS
Benchmark suites have been typically
used to analyze the performance among
architectures [15]. In practice, bench-
marking of multicore architectures has
proven to be significantly more compli-
cated than benchmarking of single core
devices because multicore performance
is affected not only by the choice of CPU
but also very heavily by the CPU inter-
connect and the connection to memory.
There is no single agreed-upon pro-
gramming language for multicore pro-
gramming and, hence, there is no
equivalent of the “out of the box” bench-
mark, commonly used in single core
benchmarks. Benchmark performance

is heavily dependent on the amount of tweaking and optimi-
zation applied as well as the suitability of the benchmark for
the particular architecture being evaluated. As a result, it can
be seen that single-core benchmarking was already a compli-
cated task when done well, and multicore benchmarking is
proving to be exponentially more challenging. The topic of
benchmark suites for multicore remains an active field of
study [16]. Currently available benchmarks are mainly sim-
plified benchmarks that were primarily developed for single-
core systems.

[FIG6] Freescale 8156 multicore DSP processor.

JTAG

SC3850
DSP Core

MAPLE-B

Dual RISC Engine

Turbo/
Viterbi

DFT/
IDFT

FFT/
IFFT

CRCU

Class

DDR2/DDR3
SDRAM Controller

DDR2/DDR3
SDRAM Controller

M3 Memory
1,056 kB

I/O Interrupt

UART

Clocks

Timers

Reset

Semaphores

Virtual Interrupts

Boot ROM

I2C

Other
Modules

DMA
Four

TDMS
QUICC
Engine

Subsystem

High-
Speed
Serial

Interface

Two
SGMII

32 kB L1
I-Cache

32 kB L1
D-Cache

512 kB L2 Cache/
M2 Memory

[FIG7] picoChip PC205 multicore DSP processor.

ADI/IPI

ADI/IPI

ADI/IPI

GPIO

JTAG
Debug

JTAG
Debug

UART (2) RTC Timer GPIO/SIM Interrupt

128 kB
SRAM

APB BridgeTCM I/D

ARM926EJ-S

Cache I/D DMA
Controller

DMA
Controller

10/100
Ethernet

External
Bus

Interface

SDRAM
Interface

Correlator

CTC FFTViterbiReed
Solomon

Crypto

picoArray

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [44] NOVEMBER 2009

One such a benchmark is the Berkeley Design Technology,
Inc. (BTDI) orthogonal frequency division multiplexing (OFDM)
benchmark [17] that was used to evaluate and compare the per-
formance of some single and multicore DSPs in addition to
other processing engines. The BTDI OFDM benchmark is a sim-
plified digital signal processing path for a fast Fourier transform
(FFT)-based OFDM receiver [17]. The path consists of a cascade
of a demodulator, finite impulse response (FIR) filter, FFT, slic-

er, and Viterbi decoder. The benchmark
does not include interleaving, carrier
recovery, symbol synchronization, and
frequency-domain equalization.

Table 2 shows relative results for maxi-
mizing the number of simultaneous non-
overlapping OFDM channels that can be
processed in real time, as would be needed
for an access point or a base station. These
results show that the four considered mul-
ticore DSPs can process in real time a high-
er number of OFDM channels as compared
to the considered single-core processor
using this specific simplified benchmark.

However, it should be noted that this
application benchmark does not necessarily
fit the use cases for which the candidate
processors were designed. In other words,
different results can be produced using dif-
ferent benchmarks since single and multi-
core embedded processors are generally
developed to solve a particular class of func-
tions that may or may not match the
benchmark in use. At the end, what matters
most is the actual performance achieved
when the chips are tested for the custom-
er’s desired end solution.

SOFTWARE TOOLS
FOR MULTICORE DSPs
Due to the hard, real-time nature of DSP
programming, one of the main require-
ments that DSP programmers insist on
having is the ability to view low-level
code, to step through their programs

[FIG8] The picoChip picoArray.

P1 P1 P1 P1 P1 P1 P1 P1

P1 P1 P1 P1

P1

ADI

GPIO

P1 P1 P1

P1 P1 P1 P1

P1 P1 P1

P1 P1 P1 P1 P1 P1 P1 P1P3 P3

P3P3 P1

Array Processing

Elements

Switch Matrix

Asynchronous

Digital Interface

General Purpose I/O

ADIPx

GPIO

[FIG9] Tilera TILE64 multicore DSP processor.

Memory Controller Memory Controller

Memory Controller Memory Controller

Tile Tile Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile Tile Tile

P
e
ri

p
h
e
ra

ls

P
e
ri

p
h
e
ra

ls

Processor
Cache

L1/L2

Switch

[TABLE 2] BTDI OFDM BENCHMARK RESULTS ON VARIOUS
PROCESSORS FOR THE MAXIMUM NUMBER OF SIMULTANE-
OUS OFDM CHANNELS PROCESSED IN REAL TIME. THE
SPECIFIC NUMBER OF SIMULTANEOUS OFDM CHANNELS
IS GIVEN IN [17].

CLOCK
(MHZ)

DSP
CORES

OFDM
CHANNELS

TI TMS320C6455 1,200 1 LOWEST
FREESCALE MSC8144 1,000 4 LOW
SANDBRIDGE SB3500 500 3 MEDIUM
PICOCHIP PC102 160 344 HIGH
TILERA TILE64 866 64 HIGHEST

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [45] NOVEMBER 2009

instruction by instruction, and
evaluate their algorithms and
“see” what is happening at
every processor clock cycle.
Visibility is one of the main
impediments to multicore DSP
programming and to real-time debugging as the ability to
“see” in real time decreases significantly with the integration
of multiple cores on a single chip. Improved chip-level debug
techniques and hardware-supported visualization tools are
needed for multicore DSPs. The use of caches and multiple
cores has complicated matters and forced programmers to
speculate about their algorithms based on worst-case scenari-
os. Thus, their reluctance to move to multicore programming
approaches. For programmers to feel confident about their
code, timing behavior should be predictable and repeatable [5].
Hardware tracing with embedded trace buffers (ETB) [18] can
be used to partially alleviate the decreased visibility issue by
storing traces that provide a detailed account of code execu-
tion, timing, and data accesses. These traces are collected
internally in real time and are usually retrieved at a later time
when a program failure occurs or for collecting useful statis-
tics. Virtual multicore platforms and simulators, such as
Simics by Virtutech [19], can help programmers in developing,
debugging, and testing their code before porting it to the real
multicore DSP device.

Operating systems (OSs) provide abstraction layers that
allow tasks on different cores to communicate. Examples of
OSs include SMP Linux [20], [21], TI’s
DSP BIOS [22], and Enea’s OSEck [23].
One main difference between these OSs
is in how the communication is per-
formed between tasks running on differ-
ent cores. In SMP Linux, a common set
of tables that reflect the current global
state of the system are shared by the
tasks running on different cores. This
allows the processes to share the same
global view of the system state. On the
other hand, TI’s DSP/BIOS and Enea’s
OSEck supports a message passing pro-
gramming model. In this model, the
cores can be viewed as “islands with
bridges” as contrasted with the “global
view” that is provided by SMP Linux.
Control and management middleware
platforms, such as Enea’s dSpeed [23],
extend the capabilities of the OS to allow
enhanced monitoring, error handling,
trace, diagnostics, and interprocess com-
munications.

As in memory organization, program-
ming models in multicore processors
include SMP models and AMP models [24].
In an SMP model, the cores form a shared

set of resources that can be
accessed by the OS.

The OS is responsible for
assigning processes to different
cores while balancing the load
between all the cores. An

example of such an OS is SMP Linux [18], [19], which boasts a
huge community of developers and lots of inexpensive soft-
ware and mature tools. Although SMP Linux has been used on
AMP architectures such as the mesh interconnected Tilera
architecture, SMP Linux is more suitable for SMP architec-
tures (see the section “Interconnect and Memory
Organization”) because it provides a shared symmetric view. In
comparison, TI’s DSP/BIOS and Enea’s OSE can better support
AMP architectures since they allow the programmer to have
more control over task assignments and execution. The AMP
approach does not balance processes evenly between the cores
and so can restrict which processes get executed on what
cores. This model of multicore processing includes classic
AMP, processor affinity, and virtualization [23].

Classic AMP is the oldest multicore programming
approach. A separate OS is installed on each core and is
responsible for handling resources on that core only. This sig-
nificantly simplifies the programming approach but makes it
extremely difficult to manage shared resources and I/O. The
developer is responsible for ensuring that different cores do
not access the same shared resource as well as be able to com-
municate with each other.

ADDING MULTIPLIER UNITS IS
THE SIMPLEST FORM OF DOING

MULTIPROCESSING IN A DSP DEVICE.

[FIG10] The Agere SP2603.

SC3400 DSP

Subsystem
SC3400 DSP

Subsystem

SC3400 DSP

Subsystem
2/ TDM

Ports

ARM

JTAG

ARM11

Subsystem
256 kB

Memory

48 kB

Memory
DMAC

AXI-Based PPB Bus Matrix

AXI-Based DSP Bus Matrix

P
C

C

D
O

C

D
M

I

D
M

A

S
B

I

P
C

C

D
O

C

D
M

I

D
M

A

S
B

I

P
C

C

D
O

C

D
M

I

D
M

A

S
B

I

PCE/TXD PCE/TXD

GPIO
DDR2 x

16 EMI

PCI at

33 MHz

Gigabit

Ethernet

Gigabit

Ethernet I2C

3 MB

System

Memory

(12/

256 kB

Banks)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [46] NOVEMBER 2009

In processor affinity, the
SMP OS scheduler is modified
to allow programmers to assign
a certain process to a specific
core. All other processes are
then assigned by the OS. SMP
Linux has features to allow
such modifications. A number of programming languages fol-
lowing this approach have appeared to extend or replace C to
better allow programmers to express parallelism. These include
OpenMP [25], MPI [26], X10 [27], MCAPI [28], GlobalArrays
[29], and Uniform Parallel C [30]. In addition, functional lan-
guages such as Erlang [31] and Haskell [32] as well as stream
languages such as ACOTES [33] and StreamIT [34] have been
introduced. Several of these languages have been ported to
multicore DSPs. OpenMP is an example of that. It is a widely
adopted shared-memory, parallel-programming interface pro-
viding high-level programming constructs that enable the user
to easily expose an application’s task and loop-level parallelism
in an incremental fashion. Its range of applicability was signifi-
cantly extended by the addition of explicit tasking features. The
user specifies the parallelization strategy for a program at a
high level by annotating the program code; the implementa-
tion works out the detailed mapping of the computation to the
machine. It is the user’s responsibility to perform any code
modifications needed prior to the insertion of OpenMP con-
structs. In particular, OpenMP requires that dependencies that
might inhibit parallelization are detected and where possible,

removed from the code. The
major features are directives
that specify that a well-struc-
tured region of code should be
executed by a team of threads,
who share in the work. Such
regions may be nested. Work

sharing directives are provided to effect a distribution of work
among the participating threads [35].

Virtualization partitions the software and hardware into a set
of virtual machines (VMs) that are assigned to the cores using a
VM manager (VMM). This allows multiple operating systems to
run on single or multiple cores. Virtualization works as a level
of abstraction between the OS and the hardware. VirtualLogix
employs virtualization technology using its VLX for embedded
systems [36]. VLX announced support for TI single and
 multicore DSPs. It allows TI’s real-time OS (DSP/BIOS) to run
concurrently with Linux. Therefore, DSP/BIOS is left to run
critical tasks while other applications run on Linux.

APPLICATIONS OF MULTICORE DSPs

MULTICORE FOR MOBILE APPLICATION PROCESSORS
The earliest SoC multicore in the embedded space was the two-
core heterogeneous DSP1ARM combination introduced by TI in
1997. These have evolved into the complex OMAP line of SoC for
handset applications. Note that the latest in the OMAP line has
both multicore ARM (symmetric multiprocessing) and DSP (for

heterogeneous multiprocessing). The
choice and number of cores is based on the
best solution for the problem at hand and
many combinations are possible. The OMAP
line of processors is optimized for portable
multimedia applications. The ARM cores
tend to be used for control, user interac-
tion, and protocol processing, whereas the
DSPs tend to be signal processing slaves to
the ARMs, performing compute intensive
tasks such as video codecs. Both CPUs have
associated hardware accelerators to help
them with these tasks and a wide array of
specialized peripherals allows glueless con-
nectivity to other devices.

This multicore is an integration play
to reduce cost and power in the wireless
handset. Each core had its own unique
function and the amount of interaction
between the cores was limited. However,
the development of a communications
bridge between the cores and a master/
slave programming paradigm were impor-
tant developments that allowed this
model of processing to become the most
highly used multicore in the embedded
space today [37].

AT THE END, WHAT MATTERS MOST
IS THE ACTUAL PERFORMANCE

ACHIEVED WHEN THE CHIPS ARE
TESTED FOR THE CUSTOMER’S DESIRED

END SOLUTION.

[FIG11] TI TCI6487.

TMS320C64x+

Core

TMS320C64x+

Core

TMS320C64x+

Core

RSA RSA RSA

L1 Data

L1 Prog

L1 Data

L1 Prog

L1 Data

L1 Prog

L2 Memory L2 Memory

EDMA 3.0 with Switch Fabric

L2 Memory

GPIO PLL

Timers Others

McBSP
Antenna

Interface

DDR2

Interface

Serial

RapidIO

10/100/IG

Ethernet

BootROM V
C

P
2

T
C

P
2

R
A

C

I2C

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [47] NOVEMBER 2009

MULTICORE FOR CORE
NETWORK TRANSCODING
The next integration play was
in the transcoding space. In
this space, the master/slave
approach is again taken, with a
host processor, usually servicing multiple DSPs, that is in
charge of load balancing many tasks onto the multicore DSP.
Each task is independent of the others (except for sharing pro-
gram and some static tables) and can run on a single DSP
CPU. Figure 10 shows the Agere SP2603, a multicore device
used in transcoding applications.

Therefore, the challenge in this type of multicore SoC is
not in the partitioning of a program into multiple threads or
the coordination of processing between CPUs, but in the coor-
dination of CPUs in the access of shared, non CPU, resources,
such as DDR memory, Eth ernet ports, shared L2 on chip mem-
ory, bus resources, and so on. Heterogeneous variants also
exist with an ARM on-chip to control the array of DSP cores.

Such multicore chips have reduced the power per channel and
cost per channel by an order of magnitude over the last decade.

MULTICORE FOR BASE
STATION MODEMS
Finally, the last five years have seen many multicore entrants
into the base station modem business for cellular infrastructure.
The most successful have been DSP-based with a modest number
of CPUs and significant shared resources in memory, accelera-
tion, and I/O. An example of such a device is the TI TCI6487
shown in Figure 11.

Applications that use these multicore devices require very
tight latency constraints, and each core often has a unique func-
tionality on the chip. For instance, one
core might do only transmit while another
does receive and another does symbol rate
processing. Again, this is not a generic
programming problem. Each core has a
specific and very well-timed set of tasks to
perform. The trick is to make sure that
timing and performance issues do not
occur due to the sharing of non- CPU
resources [38].

However, the base-station market also
attracted new multicore architectures in a
way that neither handset (where the cost
 constraints and vol ume tended to favor
hardwired solutions beyond the ARM/DSP
platform) nor transcoding (where the
complexity of the software has kept “stan-
dard” DSP multicore in the forefront) have
experienced. Examples of these new para-
digm companies include Chameleon,
PACT, BOPS, Picochip, Morpho, Morphics,
and Quicksilver. These companies arose
in the late 1990s and mostly died in the

 fallout of the tech bubble burst.
They suffered from a lack of
production quality tooling and
no clear programming model.
In general, they came in two
types; arrays of arithmetic logic

units (ALUs), with a central controller, and arrays of small
CPUs, tightly connected and generally intended to communi-
cate in a very synchronized manner. Figure 8 shows the picoAr-
ray used by picoChip, a proponent of regular, meshed arrays of
processors. Serious programming challenges remain with this
kind of architecture because it requires two distinct modes of
programming, one for the CPUs themselves and one for the
interconnect between the CPUs. A single programming lan-
guage would have to be able to not only partition the workload
but also comprehend the memory locality, which is severe in a
mesh-based architecture.

NEXT GENERATION MULTICORE
DSP PROCESSORS
Current and emerging mobile communications and network-
ing standards are providing even more challenges to DSP.
The high data rates for the physical layer processing, as well
as the requirements for very low power have driven design-
ers to use application-specific integrated circuit (ASIC) de -
signs. However, these are becoming increasingly complex
with the proliferation of protocols, driving the need for soft-
ware solutions.

Software-defined radio (SDR) holds the promise of allowing a
single piece of silicon to alternate between different modem
standards. Originally motivated by the military as a way to allow
multinational forces to communicate [39], it has made its way

FOR PROGRAMMERS TO FEEL
CONFIDENT ABOUT THEIR CODE,
TIMING BEHAVIOR SHOULD BE
PREDICTABLE AND REPEATABLE.

[FIG12] The AsAP processor architecture.

In Data,

Valid and

Clock Out Data, Valid and Clock

Out Request

Configuration and Test Logic

External Clock

In Mux

Select
Out Mux

Select

Test OutSerial Config. Bit Stream

In

Request

Motion

Estimation

Viterbi

Decoder
FFT

16 kB Shared Memories

DVFS

Comm

Osc DMem

IMem FIFO

Tile

Core

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [48] NOVEMBER 2009

into the commercial arena due
to a proliferation of different
standards on a single cell phone
(for instance GSM, EDGE,
WCDMA, Bluetooth, 802.11, FM
radio, and DVB).

Signal-Processing On-Demand Architecture (SODA) [40] is
one multicore DSP architecture designed specifically for SDR
applications. Some key features of SODA are the lack of cache
with multiple DMA and scratchpad memories used instead for
explicit memory control. Each of the processors has a 32 3 16 b
SIMD datapath and a coupled scalar datapath designed to handle
the basic DSP operations performed on large frames of data in
communication systems.

Another example is the Asynchronous Array of Simple
Processors (AsAP) architecture [41] that relies on the dataflow
nature of DSP algorithms to obtain power and performance
efficiency. Shown in Figure 12, it is similar to the Tilera archi-
tecture at a superficial glance, but also takes the mesh network
principal to its logical conclusion, with very small cores
10.17 mm2 2 and only a minimal amount of memory per core
(128 word program and 128 word data). The cores communi-
cate asynchronously by doubly clocked FIFO buffers, and each
core has its own clock generator so that the device is essential-
ly clockless. When a FIFO is either empty or full, the associated
cores will go into a low power state until they have more data
to process. These and other power-saving techniques are used
in a design that is heavily focused on low power computation.
There is also an emphasis on local communication, with each
chip connected to its neighbors, in a similar manner to the
Tilera multicore. Even within the core, the connectivity is
focused on allowing the core to absorb data rather than reroute
it to other cores. The overall goal is to optimize for data flow
programming with mostly local interconnect. Data can travel a
distance of more than one core but will require more latency
to do so. The AsAP chip is interesting as a “pure” example of a
tiled array of processors with each processor performing a
 simple computation. The programming model for this kind of
chip is, however, still a topic of research. Ambric produced an
architecturally similar chip [42] and showed that, for simple
data flow problems, software tooling could be developed.

An example of this data flow approach to multicore DSP
design can be found in [43], where the concept of bulk-syn-
chronous processing, a model of computation where data is
shared between threads mostly at synchronization barriers, is
introduced. This deterministic approach to the mapping of
algorithms to multicore is in line with the recommendations
made in [44] where it is argued that adding parallelism in a
nondeterministic manner (such as is commonly done with
POSIX threads [14]) leads to systems that are unreasonably
hard to test and debug. Fortunately, the parallelization of DSP
algorithms can often be done in a deterministic manner using
data flow diagrams. Hence, DSP may be a more fruitful space
for the development of multicore than the general-purpose
programming space.

Sandbridge (see the section
“Existing Vendor-Specific
Multicore DSP Platforms”) has
also been producing DSPs
designed for the SDR space for
several years.

CONCLUSIONS AND FUTURE TRENDS
In the last two years, the embedded DSP market has been swept
up by the general increase in interest in multicore that has been
driven by companies such as Intel and Sun.

One reason for this is that there is now a lot of focus on
tooling in academia and also a willingness on the part of users
to accept new programming paradigms. This industry-wide
effort will have an effect on the way multicore DSPs are pro-
grammed and perhaps architected. But it is too early to say in
what way this will occur. Programming multicore DSPs
remains very challenging. The problem of how to take a piece
of sequential code and optimally partition it across multiple
cores remains unsolved. Hence, there will naturally be a lot of
variations in the approaches taken. Equally important is the
issue of debugging and visibility. Developing effective and
easy-to-use code development and real-time debug tools is
tremendously important as the opportunity for bugs goes up
significantly when one starts to deal with both time and space.

The markets that DSP plays in have unique features in their
desire for low power, low cost, and hard real-time processing,
with an emphasis on mathematical computation. How well the
multicore research being performed presently in academia will
address these concerns remains to be seen.

AUTHORS
Lina J. Karam (karam@asu.edu) received the B.E. degree in
computer and communications engineering from the American
University of Beirut in 1989 and the M.S. and Ph.D. degrees in
electrical engineering from Georgia Institute of Technology in
1992 and 1995, respectively. Since 1995, she has been on the fac-
ulty in the Electrical Engineering Department at Arizona State
University, where she directs the Image, Video, and Usability and
the Real-Time Embedded Signal Processing Laboratories. She
was awarded the 1998 U.S. National Science Foundation
CAREER Award. She is a Senior Member of the IEEE.

Ismail AlKamal (ismail.alkamal@asu.edu) received a B.E.
degree in electrical engineering from Aleppo University in
2005 and an M.E. degree in electrical and computer engineer-
ing from the American University of Beirut in 2008. In 2008,
he was a visiting researcher with the Image, Video, and
Usability Group at Arizona State University. He also is the
founder and lead system designer at Nawatt Labs, where he
worked on several projects in embedded systems, data acquisi-
tion, industrial control and automation, vision systems, and
ultrasound. He is a Member of the IEEE.

Alan Gatherer (gatherer@ti.com) is a Texas Instruments
(TI) Fellow and the CTO for the High Performance Multicore
Processor Businesses at Texas Instruments. He led the

CURRENT AND EMERGING MOBILE
COMMUNICATIONS AND NETWORKING

STANDARDS ARE PROVIDING EVEN
MORE CHALLENGES TO DSP.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [49] NOVEMBER 2009IEEE SIGNAL PROCESSING MAGAZINE [49] NOVEMBER 2009

 development of high performance, multicore DSP at TI and is
responsible for the strategy behind digital baseband modem
development for 3G and 4G wireless infrastructure as well as
high-performance medical equipment. He holds 60 awarded
patents and is author of The Application of Programmable
DSPs in Mobile Communications.

Gene A. Frantz (genf@ti.com) received his B.S.E.E. degree
from the University of Central Florida (1971), his M.S.E.E.
degree from Southern Methodist University (1977), and his
M.B.A. from Texas Tech University (1982). He joined Texas
Instruments (TI) in 1974, spending most of his career focusing
on DSP, where he is a recognized leader both within TI and
throughout the industry. He holds 45 patents and has written
more than 50 papers and articles. He is TI’s Principal Fellow and
a Fellow of the IEEE.

David V. Anderson (dva@ece.gatech.edu) received his B.S and
M.S. degrees from Brigham Young University and a Ph.D. degree
from Georgia Institute of Technology (Georgia Tech) in 1993,
1994, and 1999, respectively. He is currently an associate profes-
sor in the School of Electrical and Computer Engineering at
Georgia Tech and codirector of the Advanced Center for
Embedded Systems. His research interests are in signal process-
ing and embedded systems. He was awarded the 2004 National
Science Foundation CAREER Award and the 2004 Presidential
Early Career Award for Scientists and Engineers. He is a Senior
Member of the IEEE.

Brian L. Evans (bevans@ece.utexas.edu) received a B.S.
degree in electrical engineering and computer science from the
Rose-Hulman Institute of Technology in 1987 and M.S. and
Ph.D. degrees in electrical engineering from Georgia Institute
of Technology in 1988 and 1993, respectively. From 1993 to
1996, he was a post-doctoral researcher in design automation
for embedded systems at the University of California, Berkeley.
Since 1996, he has been on the faculty at The University of
Texas at Austin, where he is currently an electrical and comput-
er engineering professor. In 1997, he won the U.S. NSF CAREER
Award. He is a Fellow of the IEEE.

REFERENCES
[1] G. M. Amdahl, “Validity of the single-processor approach to achieving large scale
computing capabilities,” in AFIPS Conf. Proc., Apr. 1967, vol. 30, pp. 483–485.

[2] M. D. Hill and M. R. Marty, “Amdahl’s Law in the multicore era,” IEEE Comput.
Mag., vol. 41, no. 7, pp. 33–38, July 2008.

[3] W. Strauss. (2009, Feb.). Wireless/DSP market bulletin. Forward Concepts [On-
line]. Available: http://www.fwdconcepts.com/dsp2209.htm

[4] I. Scheiwe. (2005, Nov.). The shift to multicore DSP solutions. DSP-FPGA [On-
line]. Available: http://www.dsp-fpga.com/articles/id/?21

[5] S. Bhattacharyya, J. Bier, W. Gass, R. Krishnamurthy, E. Lee, and K. Konstan-
tinides, “Advances in hardware design and implementation of signal processing systems
[DSP Forum],” IEEE Signal Processing Mag., vol. 25, no. 6, pp. 175–180, Nov. 2008.

[6] (2007, Apr.). Practical programmable multicore DSP, picoChip [Online]. Avail-
able: http://www.picochip.com/

[7] (2008, Aug.). Tile processor architecture technology brief, Tilera [Online]. Avail-
able: http://www.tilera.com

[8] (2007, Jan.). TNETV3020 carrier infrastructure platform, Texas Instruments
[Online]. Available: http://focus.ti.com/lit/ml/spat174a/spat174a.pdf

[9] (2008, Dec.). MSC8156 product brief, Freescale [Online]. Available: http://www.
freescale.com/webapp/sps/site/prod_summary.jsp?code=MSC8156&nodeId=0127
950E5F5699
[10] (2008, Apr.). PC205 product brief, picoChip [Online]. Available: http://www.
picochip.com/

[11] (2008, Aug.). Tile64 processor product brief, Tilera [Online]. Available: http://
www.tilera.com
[12] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar, and M. Schulte, “The
Sandbridge SB3011 SDR platform,” in Proc. Joint IST Workshop Mobile Future and
Symp. Trends in Communications (SympoTIC), June 2006, pp. ii–v.
[13] J. Glossner, M. Moudgill, D. Iancu, G. Nacer, S. Jintukar, S. Stanley, M. Samori,
T. Raja, and M. Schulte. (2005). The Sandbridge Sandblaster Convergence platform.
Sandbridge Technologies Inc. [Online]. Available: http://www.sandbridgetech.com/
[14] (2004). POSIX: IEEE Standard 1003.1 [Online]. Available: http://www.unix.
org/version3/ieee_std.html
[15] G. Frantz and L. Adams, “The three P’s of value in selecting DSPs,” Embedded
Syst. Programming, pp. 37–46, Nov. 2004.
[16] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. (2006,
Dec.). The landscape of parallel computing research: A view from Berkeley. Tech.
Rep. UCB/EECS-2006-183 [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.pdf
[17] BDTI [Online]. Available: http://www.bdti.com/bdtimark/ofdm.htm
[18] Embedded trace buffer, Texas Instruments eXpressDSP Software Wiki [Online].
Available: http://tiexpressdsp.com/index.php?title=Embedded_Trace_Buffer
[19] VirtuTech [Online]. Available: http://www.virtutech.com/datasheets/simics_
mpc8641d.html
[20] H. Dietz. (1996, July). Linux parallel processing using SMP [Online]. Available:
http://cobweb.ecn.purdue.edu/~pplinux/ppsmp.html
[21] M. T. Jones. “Linux and symmetric multiprocessing: Unblocking the power of
Linux SMP systems” IBM developerWorks, Mar. 2007 [Online]. Available: http://
www.ibm.com/developerworks/library/l-linux-smp/
[22] TI DSP/BIOS [Online]. Available: http://focus.ti.com/docs/toolsw/folders/print/
dspbios.html
[23] Enea [Online]. Available: http://www.enea.com/
[24] K. Williston, “Multicore software: Strategies for success,” Embedded Innovator,
pp. 10–12, Fall 2008.
[25] OpenMP [Online]. Available: http://openmp.org/wp/
[26] MPI [Online]. Available: http://www.mcs.anl.gov/research/projects/mpi/
[27] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C.
von Praun, and V. Sarkar, “X10: An object-oriented approach to non-uniform cluster
computing,” in Proc. ACM OOPSLA, Oct. 2005, pp. 519–538.
[28] MCAPI [Online]. Available: http://www.multicore-association.org/workgroup/
comapi.php
[29] Global arrays [Online]. Available: http://www.emsl.pnl.gov/docs/global/
[30] Unified Parallel C [Online]. Available: http://upc.lbl.gov/
[31] Erlang [Online]. Available: http://erlang.org/
[32] Haskell [Online]. Available: http://www.haskell.org/
[33] ACOTES [Online]. Available: http://www.hitech-projects.com/euprojects/
ACOTES/
[34] StreamIT [Online]. Available: http://www.cag.lcs.mit.edu/streamit/
[35] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and A.
Gatherer, “Implementing OpenMP on a high performance embedded multicore
MPSoC,” presented at the Proc. IEEE Int. Parallel and Distributed Processing
Symp., 2009.
[36] VirtualLogix [Online]. Available: http://www.virtuallogix.com/products/vlx-for-
embedded-systems/vlx-for-es-supporting-ti-dsp-processors.html
[37] E. Heikkila and E. Gulliksen, “Embedded processors 2009 global market demand
analysis,” VDC Research [Online]. Available: http://www.electronics.ca/publica-
tions/products/Embedded-Processors:-Global-Market-Demand-Analysis.html
[38] A. Gatherer. (2008, Aug.). Base station modems: Why multicore? Why now?
ECN Mag. [Online]. Available: http://www.ecnmag.com/supplements-Base-Station-
Modems-Why_Multicore.aspx?menuid=580
[39] Software communications architecture [Online]. Available: http://sca.jpeojtrs.
mil/
[40] Y. Lin, H. Lee, M. Who, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K.
Flautner, “SODA: A high-performance DSP architecture for software-defined radio,”
IEEE Micro, vol. 27, no. 1, pp. 114–123, Jan./Feb. 2007.
[41] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J.
Meeuwsen, A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. V. Mejia, and B. M. Baas, “A
167-processor computational platform in 65nm,” IEEE J. Solid-State Circuits, vol. 44,
no. 4, pp. 1130–1144, Apr. 2009.
[42] M. Butts, “Addressing software development challenges for multicore and mas-
sively parallel embedded systems,” presented at Multicore Expo, 2008.
[43] J. H. Kelm, D. R. Johnson, A. Mahesri, S. S. Lumetta, M. Frank, and S.
Patel. (2008, Aug.). SChISM: Scalable cache incoherent shared memory. Univ.
of Illinois, Urbana-Champaign. Tech. Rep. UILU-ENG-08-2212 [Online]. Avail-
able: http://www.crhc.illinois.edu/TechReports/2008reports/08-2212-kelm-tr-
with-acks.pdf
[44] E. A. Lee. (2006, Jan.). The problem with threads. UCB Tech. Rep. [On-
line]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-1.pdf [SP]

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 25, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

