IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 2, APRIL 1989

487

SPIM: A Pipelined 64 X 64-bit
Iterative Multiplier

MARK R. SANTORO, STUDENT MEMBER, IEEE, AND MARK A. HOROWITZ, MEMBER, IEEE

Abstract — A 64X 64-bit iterating multiplier, the Stanford Pipelined Iter-
ative Multiplier (SPIM), is pr ted. The pipelined array consists of a
small tree of 4:2 adders. The 4:2 tree is better suited than a Wallace tree
for a VLSI implementation because it is a more regular structure. A 4:2
carry-save accumulator at the bottom of the array is used to iteratively
accumulate partial products, allowing a partial array to be used, which
reduces area. SPIM was fabricated in a 1.6-pm CMOS process. It has a
core size of 3.8X6.5 mm and contains 41 000 transistors. The on-chip
clock generator runs at an internal clock frequency of 85 MHz. The
-latency for a 64 X 64-bit fractional multiply is under 120 ns, with a pipeline
rate of one multiply every 47 ns.

I. INTRODUCTION

HE DEMAND for high-performance floating-point

co-processors has created a need for high-speed,
small-area multipliers. Applications such as DSP, graphics,
and on-chip multipliers for processors require fast area
efficient multipliers. Conventional array multipliers achieve
high performance but require large amounts of silicon,
while shift and add multipliers require less hardware but
have low performance. Tree structures achieve even higher
performance than conventional arrays but require still
more area.

The goal of this project was to develop a multiplier
architecture which was faster and more area efficient than
a conventional array. As a test vehicle for the new archi-
tecture, a structure capable of performing the mantissa
portion of a double extended precision (80 bit) floating-
point multiply was chosen. The multiplier core should be
small enough such that an entire floating-point co-
processor, including a floating-point multiplier, divider,
ALU, and register file, could be fabricated on a single
chip. A core size of less than 25 mm? was determined to be
acceptable. This paper presents a 64X 64-bit pipelined
array iteratively accumulating multiplier, the Stanford
Pipelined Iterative Multiplier (SPIM), which can provide
over twice the performance of a comparable conventional
full array at one-fourth of the silicon area.

Manuscript received July 1, 1988; revised September 25, 1988 and
November 21, 1988. The development of SPIM was supported in part by
the Defense Advanced Project Research Agency (DARPA) under Con-
tracts MDA903-83-C-0335 and N00014-87-K-0828.

The authors are with the Center for Integrated Systems, Stanford
University, Stanford, CA 94305.

IEEE Log Number 8826243.

SHEE
HRaE
Saos

K o

Conventional array muitiplier. Shaded areas represent interme-
diate partial product flowing down array.

Haas
RRns
HRas

Fig. 1.

II. ARCHITECTURAL OVERVIEW

Conventional array multipliers consist of rows of carry-
save adders (CSA) where each row of CSA’s sums up one
additional partial product (see Fig. 1).! Since intermediate
partial products are kept in carry-save form there is no
carry propagate, so the delay is only dependent upon the
depth of the array and is independent of the partial-prod-
uct width. Although arrays are fast, they require a large
amount of hardware which is used inefficiently. As the
sum is propagated down through the array, each row of
CSA’s is used only once. Most of the hardware is doing no
useful work at any given time. Pipelining can be used to
increase hardware utilization by overlapping several calcu-
lations. Pipelining greatly increases throughput, but the
added latches increase both the required hardware and the
latency.

Since full arrays tend to be quite large when multiplying
double or extended precision numbers, chip designers have
used partial arrays and iterated using the system clock.
This structure has the benefit of reducing the hardware by
increasing utilization. At the limit, an iterative structure

1Carry—save adders are also often referred to as full adders or 3:2
adders.

0018-9200,/89 /0400-04873501.00 ©1989 IEEE

488

1’2 ? 2 /g2 1’2
Fig. 2. Minimal iterative structure using a single row of CSA’s. Black
bars represent latches.

would have one row of CSA’s and a latch. Fig. 2 shows a
minimal iterative structure. Clearly, this structure requires
the least amount of hardware and has the highest utiliza-
tion since each CSA is used every cycle. An important
observation is that iterative structures can be made fast if
the latch delays are small, and the clock is matched to the
combinational delay of the CSA’s. If both of these condi-
tions are met the iterative structure approaches the same
throughput and latency as the full array. This structure
does, however, require very fast clocks. For a 2-um process
clocks may be in the 100-MHz range. A few companies
use iterative structures in their new high-performance
floating-point processors [5].

In an attempt to increase performance of the minimal
iterative structure additional rows of CSA’s could be added,
resulting in a bigger array. For example, addition of a row
of CSA cells to the minimal structure would yield a partial
array with two rows of CSA’s. This structure provides two
advantages over the single row of CSA cells: it reduces the
required clock frequency, and requires only half as many
latch delays.? One should note, however, that although we
doubled the number of CSA’s, the latency was only re-
duced by halving the number of latch delays. The number
of CSA delays remains the same. Increasing the depth of
the partial array by simply adding additional rows of
CSA’s in a conventional structure yields only a slight
performance increase. This small reduction in latency is
the result of reducing the number of latches.

To increase the performance of this iterative structure
we must make the CSA cells fast and, more importantly,
decrease the number of series adds required to generate the
product. Two well-known methods for the latter are Booth
encoding and tree structures [2], [9]. Modified Booth en-
coding, which halves the number of series adds required, is
used on most modern floating-point chips, including SPIM
[7], [8). Tree structures reduce partial products much faster
than conventional methods, requiring only order log N
CSA delays to reduce N partial products (see Fig. 3).
Though trees are faster than conventional arrays, like
conventional arrays they still require one row of CSA cells
for each partial product to be retired. Unfortunately, tree
structures are notoriously hard to lay out, and require
large wiring channels. The additional wiring makes full
trees even larger than full arrays. This has caused designers
to look at permutations of the basic tree structure [1], [11].

*In fact one rarely finds a multiplier array that consists of only a single
row of CSA’s. The latch overhead in this structure is extremely high.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 2, APRIL 1989

|

(a) (b)

(a) A conventional structure has depth proportional to N, while
(b) a tree structure has depth proportional to log N.

Fig. 3.

Cout 4:2

Pt

Carry Sum

Fig. 4. Block diagram of a 4:2 adder.

Unbalanced or modified trees make a compromise be-
tween conventional full arrays and full tree structures.
They reduce the routing required of full trees but still
require one row of CSA’s for each partial product. Ideally
one would want the speed benefits of the tree in a smaller
and more regular structure. Since high performance was a
prerequisite for SPIM, a tree structure was used. This left
two problems. The first was the irregularity of commonly
used tree structures. The second was the large size of the
trees.

Wallace [9], Dadda [4], and most other multiplier trees
use a CSA as the basic building block. The CSA takes
three inputs of the same weight and produces two outputs.
This 3:2 nature makes it impossible to build a completely
regular tree structure using the CSA as the basic building
block. A binary tree has a symmetric and regular structure.
In fact, any basic building block which reduces products
by a factor of 2 will yield a more regular tree than a 3:2
tree. Since a more regular tree structure was needed, the
solution was to introduce a new building block: the 4:2
adder, which reduces four partial products of the same
weight to 2 bits. Fig. 4 is a block diagram of the 4: 2 adder.
The truth table for the 4:2 adder is shown in Table I.
Notice that the 4:2 adder actually has five inputs and
three outputs. It is different from a 5:3 counter which
takes in five inputs of the same weight and produces three
outputs of different weights. The sum output of the 4:2
has weight 1 while the carry and C,,, both have the same

out
weight of 2. In addition, the 4:2 is not a simple counter as

SANTORO AND HOROWITZ: PIPELINED 64 X 64-BIT ITERATIVE MULTIPLIER

TABLE I
TRUTH TABLE FOR THE 4:2 ADDER
n is number of inputs (from 7nl,
In2, In3, Ind) which =1, C,, is
the input carry from the C,,, of
the adjacent bit slice, C,,, and
carry both have weight 2, and
sum has weight 1.

n [Cin| Cout | Carry | Sum
0ofo 0 0 0
1 0 0 0 1
210 * * 0
3|0 1 0 1
410 1 1 0
0|1 0 0 1
1 1 0 1 0
2 |1 * * 1
3|1 1 1 0
4 |1 1 1 1

*Either C,,, or Carry may be
ONE for two or three inputs
equal to 1 but NOT both.

C,; may NOT be a function
of the C;, from the adjacent
block or a ripple carry may
occur.

In1 In2 In3 In4

Cout -=

Carry Sum

Fig. 5. A 4:2 adder implemented with two CSA’s.
the C,, output must NOT be a function of the C,, input
or a ripple carry could occur. As for the name, 4:2 refers
to the number of inputs from one level of a tree and the
number of outputs produced at the next lower level. That
is, for every four inputs taken in at one level, two outputs
are produced at the next lower level. This is analogous to
the binary tree in which for every two inputs one output is
produced at the next lower level. The 4:2 adder can be
implemented directly from the truth table, or with two
CSA cells as in Fig. 5.3

A 4:2 tree will reduce partial products at a rate of
log, (N/2) whereas a Wallace tree requires log, s (N/2),
where N is the number of inputs to be reduced. Though
the 4:2 tree might appear faster than the Wallace tree, the
basic 4:2 cell is more complex so the speed is comparable.
The 4:2 structure does, however, yield a tree which is
much more regular. In addition the 4:2 adder has the
advantage that two CSA’s are in each pipe in place of one.
This reduces both the required clock frequency and the
latch overhead.

*SPIM implemented the 4:2 adder with two CSA cells because it
permits a straightforward comparison with other architectures on the
basis of CSA delays. By knowing the size and speed of the CSA cells in
any technology, a designer can predict the size and speed advantages of
this method over that currently used.

489

Fig. 6. With the same four CSA cells a four-input partial tree structure
with a (a) carry-save accumulator will attain almost twice the through-
put of a (b) partial piped array. In (a) the carry-save accumulator is
placed under the 4:2 adder.

To overcome the size problem SPIM uses a partial 4:2
tree, and then iteratively accumulates partial products in a
carry-save accumulator to complete the computation. The
carry-save accumulator is simply a 4:2 adder with two of
the inputs used to accumulate the previous outputs. The
carry-save accumulator is much faster than a carry-propa-
gate accumulator and requires only one additional pipe
stage.

Fig. 6 compares a single 4:2 adder with carry-save
accumulator to a conventional partial piped array.® Both
structures reduce four partial products per cycle. Notice,
however, that the tree structure is clocked at almost twice
the frequency of the partial piped array. It has only two
CSA cells per pipe stage, whereas the partial piped array
has four. Consequently, the partial array would require 32
CSA delays to reduce 32 partial products whereas the tree
structure would need only 18 CSA delays. Using the 4:2
adder with carry-save accumulator is almost twice as fast
as the partial piped array, while using roughly the same
amount of hardware.

The 4:2 adder structure can be used to construct larger
trees, further increasing performance. In Fig. 7 we use the
same 4:2 adder structure to form an eight-input tree. This
allows us to reduce eight partial products per cycle. Notice
that we still pipeline the tree after every two carry-save
adds (each 4:2 adder). In contrast, if we clocked the tree
every four carry-save adds it would double the cycle time
and only decrease the required number of cycles by one.
The overall effect would be a much slower muitiply.

Fig. 8 shows the size and speed advantages of different
sized 4:2 trees with carry-save accumulators versus con-
ventional partial arrays. This plot is a price/performance
plot where the price is size and the performance is speed
(latency =1/speed). The plot assumes we are doing a
64 X 64-bit multiply. Booth encoding is used, thus we must
retire 32 partial products. Size has been normalized such

“In Figs. 6, 7, and 9 the detailed routing has not been shown. Providing
the exact detailed routing, as was done in Fig. 5, would provide more
information; however, it would significantly complicate the figures and
would tend to obscure their purpose, which is to show the data flow in
terms of pipe stages and CSA delays.

490

CSA

Fig. 7. An ecight-input tree constructed from 4:2 adders can reduce
eight partial products per cycle.

>y
[& IS
£ 4
e3
3 8 2CSA cells
T 4 CSA cells
32 - 14 Array — @ Full Array
24 _| B Conventional partial
array structures
-) W Piped partial tree
4 input Piped tree structures
16
i 8 Input Piped tree
8 |- Full Tree
"
Size
1/4 17 3/4 1
2 (CSA cells/32)
Fig. 8. Architectural comparison of piped partial tree structure with

carry-save accumulator versus conventional partial array.

that 32 rows of CSA cells (a full array) has a size of one
unit.> In the upper left corner is the structure using only
two rows of CSA cells. In this case the tree and conven-
tional structures are one and the same and can be seen as a
partial array two rows deep, or as a two-input partial tree.
We can see that adding hardware to form larger partial
arrays provides very little performance improvement. A
full array is only 15 percent faster than the iterative
structure using two rows of CSA’s. Adding hardware in a
tree-type structure, however, dramatically improves perfor-
mance. For example, using a four-input tree, which uses
four rows of CSA’s, is almost twice as fast as the two-input
tree. Using an eight-input tree is almost three times as fast
as a two-input tree and only one-fourth the size of the full
array.

The latency of the multiplier is determined by the depth
of the partial 4:2 tree and the fraction of the partial
products compressed each cycle. The latency is equal to

5Latency is in terms of CSA delays. We have assumed a latch is
cquivalent to one-third of a CSA delay in an attempt to take the latch
delays into account. Size is the number of CSA cells used. It does not
include the latch or wiring area.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 2, APRIL 1989

Multiplicand (A input)

- |E i i
3 = | A Block B Block
3 5 [T Booth Muxes] Booth Muxes
= @
-] 3 I I — —T—T 7
= @
2 0% Y ¥ v ¥ vV vy
= 3 A Block B Block
2 g 4:2 4:2

& . . —

£ . ’

]

i |

C Block
4:2

Shift Right

D Block 16 bits
Accumulator ,r\j

To Carry Propagate Adder
Fig. 9. SPIM data path.

log, (K /2)+(N/K) where N is the operand size and K is
the partial tree size. If Booth encoding is used N would be
one-half the operand size since Booth encoding has already
provided a factor of 2 compression. Start-up times and
pipe stages before the tree must also be taken into account
when determining latency. We choose the eight-input piped
tree with Booth encoding for SPIM, as we feel this pro-
vides the best area speed trade-off for our purpose. The
number of cycles required to reduce 64 bits using Booth
encoding and an 8-bit tree is

log, (8,/2) +(32/8) + one cycle overhead = 7 cycles.®

1II. SPIM IMPLEMENTATION

Fig. 9 is a block diagram of the SPIM data path. The
Booth encoders, which encode 16 bits per cycle, are to the
left of the data path. The Booth-encoded bits drive the
Booth select MUXs in the 4 and B block. The 4 and B
block Booth select MUX outputs drive an eight-input tree
structure constructed of 4:2 adders which are found in the
A, B, and C blocks. Each pipe stage uses one 4:2 adder
which consists of two CSA’s. The D block is a carry-save
accumulator. It also contains a 16-bit hard-wired right
shift to align the partial sum from the previous cycle to the
current partial sum to be accumulated.

Fig. 10 is a die photograph of SPIM. The A4 block inputs
are preshifted allowing the A block to be placed on top of
the B block. Using 4:2 adders in a partial tree allows the
array to be efficiently routed, and laid out as a bit slice,
thus making the SPIM array a very regular structure.
Interestingly, the CSA cells occupy only 27 percent of the
core area. The Booth select MUX’s used in the 4 and B
blocks make these blocks three times as large as the C
block. Each Booth MUX with its corresponding latch is
larger than a single CSA. Also, due to the routing required
for the 16-bit shift, the D block is twice as large as the C
block. The array area can be split into four main compo-
nents: routing, CSA cells, MUX’s, and latches. The routing

®The one-cycle overhead is used for the Booth select MUX's.

SANTORO AND HOROWITZ: PIPELINED 64 X 64-BIT ITERATIVE MULTIPLIER

i OFAdder. and

491

A Block

8 Btock

C ‘Btotck

0 Block

Dutpay

Fig. 10. Microphotograph of SPIM.

{speedkh speed2.h speed3.h speedd.h speed5.h speed6.h
start.h
testclk I
testmode.h ﬂ” 2
mux
D;ez
i
felk

Fig. 11.

required 20 percent of the area, while the other 75 percent
was equally split between the CSA cells, MUXs, and
latches.

The critical path in the SPIM data path is through the D
block. The D block contains the slowest path because of
the added routing at the output, and the additional control
MUX at its input. The input MUX is needed to reset the
carry-save accumulator. It selects ZERO to reset, or the
previous shifted output when accumulating. The final criti-
cal path through the D block includes two CSA cells, a
master—slave latch, a control MUX, and the drive across
16 bits (128 pm) of routing.

IV. CLOCKING

The architecture of SPIM yields a very fast multiply;
however, the speed at which the structure runs demands
careful attention to clocking issues. Only two CSA’s (one
4:2 adder) are found in each pipe stage, yielding clock
rates on the order of 100 MHz. The typical system clock is
not fast enough to be useful for this type of structure. To
produce a clock of the desired frequency, SPIM uses a
controllable on-chip clock generator. The clock is gener-
ated by a stoppable ring oscillator. The clock is started

SPIM clock generator circuit.

when a multiply is initiated, and stopped when the array
portion of the multiply has been completed. The use of a
stoppable clock provides two benefits. It prevents synchro-
nization errors from occurring and it saves power as the
entire array is powered down upon completing a multiply.
The actual clock generator used on SPIM is shown in Fig.
11. It has a digitally selectable feedback path which pro-
vides a programmable delay element for test purposes.
This allows the clock frequency to be tuned to the critical
path delay. In addition, the clock generator has the ability
to use an external test clock in place of the fast internally
generated clock.

When a multiply signal has been received, a small delay
occurs while starting up the clocks. This delay comes from
two sources. The first source is the logic which decodes the
run signal and starts up the ring oscillator. The second
source is from the long control and clock lines running
across the array. They have large capacitive loads and
require large buffer chains to drive them. The simulated
delay of the buffer chain and associated logic is 6 ns,
almost half a clock cycle. Since the inputs are latched
before the multiply is started, SPIM does the first Booth
encode before the array clocks become active (cycle 0).
Thus, the start-up time is not wasted. After the clocks have

492

TABLE II
SPIM PIPE TIMING
Numbers indicate which partial products are being
reduced. 0 is the least significant bit.

Cycle
Action

0 1 2 3 L 5 6 7

stantup

Booth Encode 0-15 16-31 32-47 | 48-63

A and B block

Booth Muxs 015 | 1631

32-47 | 4863

A Block

0-7 16-23
CSA's

32-39 | 48-55

B Block
8-15 24-31 40-47 | 56-63
CSA's

C Block . 0-15 16-31 32-47 48-63

clear

D Block 015 16-31 32-47 | 48-63

been started SPIM requires seven clock cycles (cycles 1-7)
to complete the array portion of a multiply.

The detailed timing is shown in Table II. In the time
before the clocks are started (cycle 0) the first 16 bits are
Booth encoded. During cycle 1, the first 16 Booth-coded
partial products from cycle 0 are latched at the input of
the array. The next four cycles are needed to enter all 32
Booth-coded partial products into the array. Two addi-
tional cycles are needed to get the output through the C
and D blocks. If a subsequent multiply were to follow it
would have been started on cycle 4, giving a pipelined rate
of four cycles per multiply. When the array portion of the
multiply is complete the carry-save result is latched, and
the run signal is turned OFF. Since the final partial sum
from the D block is latched into the carry-propagate adder
only every fourth cycle, several cycles are available to stop
the clock without corrupting the tresult.

The clock generator is located in the lower left-hand side
of the die (see Fig. 10). The clock signal runs up a set of
matched buffers, along the side of the array, which are
carefully tuned to minimize skew across the array. Wider
than minimum metal lines are used on the master clock
line to reduce the resistance of the clock line relative to the
resistance of the driver. The clock and eontrol lines driven
from the matched buffers then ruh across the entire width
of the array in metal.

V. TEST RESULTS

To accurately measure the internal clock frequency, the
clock was made available at an outpuit allowing an oscillo-
scope to be attached. SPIM was then placed in continuous
(loop) mode where the clock is kept running and multiplies
are piped through at a rate of one multiply every four
cycles. Since the clock is continuously running its fre-
quency can be accurately determined.

Three components determine the actual performance of
SPIM: 1) the start-up time, when the clocks are started
and the first Booth encode takes place (cycle 0); 2) the
array time, which includes the time through the partial
array plus the accumulation cycles (cycles 1-7); and 3) the
carry-propagate addition (cpadd) time, when the final

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 2, APRIL 1989

carry-propagate addition converts the carry-save form of
the result from the accumulator to a simple binary repre-
sentation. Due to limitations in our testing equipment,
only the array time could be accurately measured. Since
the array time requires seven cycles, and the array clock
frequency was 85 MHz, the array time is simply 7-(1/85
MHz) =82.4 ns. The start-up and cpadd times, based
upon simulations, were 6 and 30 ns, respectively. In
flowthrough mode the total latency is simply the sum of
the start-up time (6 ns), the array time (82.4 ns), and the
cpadd time (30 ns), for a total of 118.4 ns. Thus SPIM has
a total latency under 120 ns. SPIM has a throughput of
one multiply every four cycles or 4-(1,/85 MHz) = 47 ns,
for a maximum pipelined rate in excess of 20-million
80-bit floating-point multiplies per second.

The performance range of the parts tested was from 85.4
to 88.6 MHz at a room temperature of 24.5°C and a
supply voltage of 4.9 V. One of the parts was tested over a
temperature range of 5-100°C. At 5°C it ran at 93.3 MHz
with speeds of 88.6 and 74.5 MHz at 25 and 100°C. The
average power consumed at 85 MHz was 72 mA while an
average of only 10 mA was consumed in standby mode.

VI. FUTURE IMPROVEMENTS

The Booth select MUX’s with their corresponding latches
account for 38 percent of the array area. This was larger
than expected. Though Booth encoding reduces the num-
ber of partial products by a factor of 2, the same result
could be achieved by adding one more level of 4:2 adders
to the tree. Since much of the routing already exists for the
Booth MUX’s, adding another level to the tree requires
replacing each two Booth select MUX’s with a 4:2 adder
and four AND gates (see Fig. 12). Sinc§ the CSA cells are
slightly larger than the Booth select MUX’s the array size
will grow slightly (by about 7 percent). Howevet, if we take
the whole picture into account, the core will remain about
the same size, as we would no longer need the Booth
encoders. Replacing the Booth encoders arld Booth select
MUX’s with an additional level to the tree would also
reduce the latency by one cycle from seven cycles to six.
This occurs because the cycle required to Booth encode is
now no longer needed. There are other advantages in
addition to the increase in speed. Perhaps the greatest gain
is the reduction in complexity. Both the Booth encoders
dand Booth select MUX’s are now unnecessary, thus the
number of cells has been reduced. In addition, Booth
encoding generates negative partial products. An increase
in complexity results in the need to handle the negative
partial products correctly. Replacing the Booth encoders
with an additional level of 4:2 adders would remove the
negative partial products. Our observation is that an in-
crease in speed and reduction in complexity can be ob-
tained with little or no increase in area.’

"Replacing the Booth encoders and select MUX’s with an additional
level of 4:2 compressors is a viable alternative on more conventional, i.e.,
nonpiped and noniterative, trees as well. The nonpipelined speed gain
depends upon the relative speed of the Booth encode plus Booth select
MUX versus the delay through one 4:2 compressor and a NAND gate.

SANTORO AND HOROWITZ: PIPELINED 64 X 64-BIT ITERATIVE MULTIPLIER

SRR S B

T Booth {] Booth [] Booth [Booth [—
] Sel [Sel [Sel [Sel —
—] mux 4 mux |4 mux (4 mux (-

s

4:2
Adder
Iy
(a)
4:2 4:2
Adder Adder
e
A:::lzer
1o
()

Fig. 12. Booth encoding versus additional tree level. (a) The Booth
encoders and Booth select MUX’s can be replaced with (b) an addi-
tional level of 4:2 adders and AND gates.

SPIM uses full static master—slave latches for testing
purposes. These latches are quite large, accounting for 27
percent of the array size. In addition, they are slow,
requiring 25 percent of the cycle time. Since the SPIM
architecture has been proven, these latches are not re-
quired on future versions. One obvious choice is simply to
replace the full static master—slave version with dynamic
latches. Another option is to split the master—slave latches
into two separate half latches and incorporate them into
the CSA cells. This would reduce area and increase speed.
A still more efficient structure is the use of single-phase
dynamic latches. The balanced pipe nature of the multi-
plier makes the use of single-phase latches possible. Since
only half as many latches are required in the pipe, single-
phase dynamic latches would reduce the cycle time and
decrease latch area.

Research on piped 4:2 trees and accumulators has con-
tinued. A test circuit consisting of a new clock generator
and an improved 4:2 adder has been fabricated in a
0.8-um CMOS technology. Preliminary test results have
demonstrated performance in the range of 400 MHz.

VII. CONCLUSION

SPIM was fabricated in a 1.6-pm CMOS process through
the DARPA MOSIS fabrication service. It ran at an inter-
nal clock speed of 85 MHz at room temperature. The

493

latency for a 64 X 64-bit fractional multiply is under 120
ns. In piped mode SPIM can initiate a multiply every four
cycles (47 ns), for a throughput in excess of 20-million
multiplies per second. SPIM required an average of 72 mA
at 85 MHz, and only 10 mA in standby mode. SPIM
contains 41 000 transistors with a core size of 3.8X6.5
mm, and an array size of 2.9 5.3 mm.

The 4:2 adder yields a tree structure which is as effi-
cient and far more regular than a Wallace-type tree and is
therefore better suited for a VLSI implementation. By
using a partial 4:2 tree with a carry-save accumulator a
multiplier can be built which is both faster and smaller
than a comparable conventional array. Future designs
implemented in a 0.8-um CMOS technology should be
capable of clock speeds approaching 400 MHz.

ACKNOWLEDGMENT

Fabrication support through MOSIS is gratefully ac-
knowledged.

REFERENCES

[1] S. F. Anderson et al., “The IBM system/360 model 91: Floating-
point execution unit,” /BM J., vol. 11, no. 1, pp. 34-53, Jan. 1967.

[2] A. D. Booth, “A signed binary multiplication technique,” Quart. J.
Mech. Appl. Math., vol. 4, Part 2, 1951.

[3] 1. F. Cavanagh, Digital Computer Arithmetic Design and Implemen-
ration. New York: McGraw-Hill, 1984.

[4] L. Dadda, “Some schemes for parallel multipliers,” Alta Freq., vol.
34, no. 5, pp. 349-356, Mar. 1965.

{51 B. Elkind, J. Lessert, J. Peterson, and G. Taylor, “A sub 10 ns
bipolar 64 bit integer/floating point processor implemented on two
circuits,” in Proc. 1EEE Bipolar Circuits and Technology Meeting,
Sept. 1987, pp. 101-104.

[6] K. Hwang, Computer Arithmetic: Principles, Architecture, and De-
sign. New York: Wiley, 1979.

[7] P.Y.Lueral.,“A30-MFLOP 32b CMOS floating-point processor,”
in ISSCC Dig. Tech. Papers, vol. XXXI, Feb. 1988, pp. 28-29.

[8] W. McAllister and D. Zuras, “An nMOS 64b floating point chip
set,” in ISSCC Dig. Tech. Papers, Feb. 1986, pp. 34-35.

[9] C. S. Wallace, “A suggestion for fast multipliers,” /EEE Trans.
Electron. Computers, vol. EC-13, pp. 14-17, Feb. 1964.

[10] S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital
Systems Designers. New York: CBS Publishing, 1982.

[11] D. Zuras and W. McAllister, “Balanced delay trees and combinato-
rial division in VLSL,” JEEE J. Solid-State Circuits, vol. SC-21, no.
S, pp. 814-819, Oct. 1986.

Mark R. Santoro was born in Miami, FL, on
May 18, 1957. He received the B.S. degree in
engineering from California State University,
Northridge, in 1981, and the M.S. degree in
electrical engineering from Stanford University,
Stanford, CA, in 1983. He is currently working
toward the Ph.D. degree in electrical engineering
at Stanford University.

His current research interests include architec-
tures for high-speed multiplication, CAD tools
for VLSI design, and VLSI circuit and architec-

ture design techniques.

Mark A. Horowitz (S77-M’83), for photograph and biography please see
this issue, p. 337.

