Programmable DSP Architectures:

Part Il

This two-part paper explores the architectural features of
single-chip programmable digital signal processors (DSPs)
that make their impressive performance possible. Part I,
which appeared in the previous issue of ASSP Magazine, dis-
cussed arithmetic and memory organizations. This part dis-
cusses pipelining. Three distinct techniques are used for
dealing with pipelining, interlocking, time-stationary coding,
and data-stationary coding. These techniques are studied in
light of the performance benefit and the impact on the user.
As in part |, representative DSPs from AT&T, Motorola, and
Texas Instruments are used to illustrate the ideas. It is not
the intent of the author to catalog available DSPs nor their
features, nor to endorse particular manufacturers. It is the
intent to compare different solutions to the same problems.
The paper concludes with a discussion of trends and some
bold predictions for the future.

1. INTRODUCTION

In Part | of this paper, which appeared in the previous
issue of ASSP Magazine, we found that programmable
DSPs use multiple memory banks in order to get adequate
memory bandwidth. Several variations on the basic
Harvard architecture were described, but they all have
one feature in common; an instruction is fetched at the
same time that operands for a previously fetched instruc-
tion are being fetched. This can be viewed as a form of
pipelining, where the instruction fetch, operand fetch,
and instruction execution form a three-stage pipeline.
Close examination, however, shows that most DSPs are not
so simple. This paper examines the timing of instructions
in DSPs, revealing intricacies and subtleties that easily
evade the casual observer. In addition, trends are dis-
cussed, complete with predictions for the future.

Most of the examples used in this paper come from
one of the DSPs in Table 1, reproduced from Part |. Other
important DSPs are listed in Table 2 of Part |. Most of the
architectural features of the DSPs in Table 2 of Part | are
also represented in Table 1, so their explicit inclusion in
this paper would be redundant. The choice of DSPs in
Table 1 stems primarily from the familiarity of the author
with the devices, and should not be construed as an en-

The views expressed in this paper are those of the author and do
not reflect an endorsement or policy of the ASSP Society, the Publi-
cations Board or the ASSP Magazine editorial personnel.

4 IEEE ASSP MAGAZINE JANUARY 1983

Edward A. Lee

dorsement. The reader is urged to contact the manufac-
turers for complete and up-to-date specifications, and
not to rely on the data presented in this paper.

2. PIPELINING

A typical programmable DSP has instructions that will
fetch two operands from memory, multiply them, add
them to an accumulator, write the result to memory, and
post-increment three address registers. It is obvious that
if all these operations had to be done sequentially within
one instruction cycle, the instruction cycle times would be
much longer than they are. Fast execution is accomplished
using pipelining.

Pipelining effectively speeds up the computation, but it
can have a serious impact on programmability. There are
three fundamentally different techniques for dealing with
pipelining in a programmable processor: interlocking,
time-stationary coding, and data-stationary coding. The
T1 DSPs primarily use interlocking, the Motorola DSPs
and the AT&T DSP16/16A use time-stationary coding, and
the AT&T DSP32/32C use data-stationary coding. As with
most taxonomies, the boundaries between the categories
are not rigid, and most DSPs have some of the flavor of
all three.

2.1. Interlocking.

One philosophy is that the programmer should not be
bothered with the internal timing or parallelism of the
architecture. Programs should be written in an assembly
language in which the programmer can assume that every
action specified in one instruction completes before the
next instruction begins. Furthermore, each instruction
should completely specify its operand memory locations
and the operation performed. The processor may be
pipelined, but it should not act as if it were so.

A simple model for the pipelining of a programmable
processor divides the instruction execution into instruc-
tion fetch, decode, operand fetch, and execute stages, as
shown in Figure 1. In the figure, the cross-hatched boxes
indicate latches, which latch signals once per instruction
cycle. The instruction fetch occurs at the same time that
the previous instruction is being decoded, and at the same
time that the operands for the instruction before that are
being fetched. The trick is to overlap instructions in this
way and still gave the impression that every instruction
finishes before the next instruction begins.

(0740-7467/88/0100-0004%1.00 © 1988 IEEE



TABLE 1. Th:s paper u
- their supamewty nar al
are available for ia
version. The numbe
operands, v is t

Comggg_nx

AT&T

Matord!a

Texas Inst.

Example 1

The TMS320C30 conforms well with the pipeline model
of Figure 1. Consider the parallel multiply and add in-
struction (see Example 18 of Part | for a program using
this instruction). Its timing is shown in Figure 2 using a
reservation table. Hardware resources are listed on the
left and time increases to the right. First the instruction
is fetched. We assume internal memory is used, in
which case only half an instruction cycle is required for
the fetch, but time is available for an external access,
which would require a full instruction cycle. Then two
parallel address arithmetic units are used to compute
the operand addresses. The TMS320C30 provides
indexed addressing, in which an index must be added
to the address prior the fetch, so computing operand
addresses is non-trivial. After this, the operands are

into instruction fetc
cute stages.

fetched. They may be fetched from two different
memories, as shown, or from the same memory. The
DDATA bus is used to transfer the operands to the
arithmetic units. Finally, the multiply and add proceed
in parallel, consuming a complete instruction cycle. A
similar instruction can be fetched every cycle without
any conflict for resources.

Although the execution of the instruction is scattered
over four cycles, it is important the programmer be un-
aware of this. A store instruction that follows the parallel
multiply and add must be able to store either the result
of the multiply or the add (or both) without any delay.

JANUARY 1989 |EEE ASSP MAGAZINE 5



The earliest possible time that such a store could occur
is in the fifth instruction cycle of Figure 2. In Figure 3, a
store to RAM2 is shown occurring at that time. Also
shown, cross-hatched, is a third instruction, fetched in
the third instruction cycle, that reads from RAM2. In
order to hide the pipelining from the programmer, it is
essential that this instruction be able to read the data
just stored. With the timing shown this occurs.

There are many possible variations on the instructions
shown in Figure 2 and Figure 3. Suppose, for example,
that the arithmetic instruction in Figure 3 required two
operands from RAM2. If the immediately preceding
instruction (the store) were not using RAM2, there
would be no problem, but as it is, there would be con-
tention for RAM2 in the fifth instruction cycle of Fig-
ure 3. In this event, the control hardware will delay
the execution of the arithmetic instruction. This delay
is called interlocking. In fact, in the TMS320C30, con-
tention for resources is not uncommon, and the control
hardware delays the execution of instructions in order
to resolve it. The programmer need not be aware of this,
but obviously performance will be degraded. Interest-
ingly, Tl supplies a simulator that gives the detailed
timing of any sequence of instructions, so that pro-
grammers intent on optimizing their code can do so
easily.

Of the DSPs discussed here, the ones that make most
use of interlocking are the Tl processors. The internal
timing of these devices is quite elaborate, and varies de-
pending on whether internal or external memories are
being used, and sometimes changes in complicated ways
during the execution of a program. Nevertheless, we can
gain intuition by considering a few more examples.

Example 2
Careful examination of the TMS32010/20/C25 architec-
tures suggests that the ADD instruction is executed as

6 IEEE ASSP MAGAZINE JANUARY 1989

shown in Figure 4a. The ADD instruction adds an operand

from data memory to the accumulator. The instruction
cycle is divided into four subcycles, and internal mem-
ory accesses are completed in three subcycles. A total
of two instruction cycles is required, although it is clear
from the reservation table that ADD instructions can
be executed at the rate of one per instruction cycle
without any resource conflict. Furthermore, an ADD in-
struction can use the result (stored in the accumulator
register) of the immediately preceding ADD instruc-
tion. So there is no pipeline hazard.

Notice that the actual addition takes only half an in-
struction cycle. This must be so because the ADD in-
struction can be followed by a SACH instruction that
stores the result of the ADD (in the accumulator) to
memory. The timing of the SACH instruction is shown
in Figure 4b. The accumulator must be valid at the time
marked in Figure 4b if the SACH instruction is to work
properly. The time marked is precisely the end of the
addition in Figure 4a. Furthermore, the SACH instruc-
tion may be followed by an ADD that uses the data
value just stored to memory; this might be foolish, but
it is certainly permissible. This determines that the write
must be completed no later than shown in Figure 4b,
so that the read of a following ADD instruction reads
valid data. For this sequence of instructions (arithmetic,
store, arithmetic) to work without evident pipelining, it
is necessary that a write, the arithmetic, and a read
complete within two instruction cycles.

The previous examples illustrate two important con-
cepts. First, the execution of an instruction need not be
constrained to one instruction cycle in order to appear
constrained to one instruction cycle. Second, the internal
timing of the DSP architecture can be inferred by carefully



considering the requirements of different sequences of
instructions.

Example 3

It is instructive to consider the FIR filter code for the
TMS32010, reproduced from Example 15 of Part I:

LARK ARO , address of last coefficient.
LARK AR1 , address of last data word.
LARP 0

LT *- ,AR1

MPY *-,ARO0

LTD *-,AR1

MPY *-,AR0

LTD *-,AR1

MPY *- ARO

APAC

ADD ONE,14

SACH RESULT,1

We will later compare the timing of this implementation
to the faster and more compact code using the RPTK
and MACD instructions. The heart of the code is the
alternating LTD and MPY instructions. The LT instruc-
tion loads the T register with a value from memory (see
Figure 1 of Part |). The LTD instruction does the same
thing, but in addition, the value loaded into the T reg-
ister is copied into the memory location above where it
came from (to implement a delay-line shift) and the
product register is added to the accumulator. One pos-
sible timing for the LTD instruction is shown in Figure
5a. The addition could actually occur earlier, since it
does not depend on the operand fetched, but control
hardware is probably simpler if it is positioned as
shown because of its similarity to the ADD instruction
in Figure 4a. One possible instruction timing for the
MPY is shown in Figure 5b. The LTD and MPY instruc-
tions can alternate as in Example 3 without conflict for
resources, and all required data is available on time.
Because of the late start of the addition in Figure 5a, the

multiplication in Figure 5b has a full instruction cycle to
complete its operation. Notice that execution of this in-
struction actually spills into a third instruction cycle.

Example 4

The TMS32020 and TMS320C25 have a more compact
construct for FIR filtering using the RPTK and MACD
instructions:

RPTK
MACD

One possible timing of the first MACD instruction is
shown in Figure 6. In this case, both the multiplication
and addition could begin earlier, but as shown their
timing coincides with that of the MPY and ADD instruc-
tions, so the control hardware is probably simpler this
way. As shown, the instruction consumes two instruc-
tion cycles before the next instruction can be fetched.
If the instruction is fetched from the unit length instruc-
tion cache, however, then the doubly cross-hatched
instruction fetch in Figure 6 is not required and only
one instruction cycle is consumed. This is how these
architectures achieve FIR filtering in one instruction
cycle per tap.

constant
mil,m2

2.2. Time-Stationary deing.

Although clearly beneficial for the programmer, inter-
locking has its costs. Higher performance can often be
obtained by giving the programmer more explicit control
over the pipeline stages. The most common way to do
this is using time-stationary coding, in which an instruc-
tion specifies the operations that occur simultaneously in
one instruction cycle.

Several DSPs are built around the rough outline of a
reservation table shown in Figure 7. An instruction would
explicitly specify three (or more) operations to be per-
formed in parallel, two memory fetches and one (or more)
arithmetic operations. Referring back to Figure 1, each in-
struction specifies simultaneous operand fetch and execute
operations, rather than successive operand fetch and exe-
cute operations. In essence, the program model is one of
parallelism rather than pipelining.

Example 5

A multiply and accumulate instruction for the DSP56001

JANUARY 1989 |EEE ASSP MAGAZINE 7



or 96002 is:

MAC X0,Y0,A X:C(RO0X+,X0 Y:(R4)-,Y0

There are three fields in this instruction, one specifying
the arithmetic operation, and the other two specifying
operand fetches for the next instruction. The operands
of the arithmetic operation are the contents of the X0
and Y 0 registers, which were loaded from memory in a
previous instruction.

The result of the multiplication is added to the A reg-
ister. Unlike any other DSP, the DSP56001 has integrated
an adder into the multiplier, so that multiplication and
accumulation are not two successive operations but ac-
tually occur together in the same hardware. The MAC
instruction shown here multiplies the contents of X0
and YO0, simultaneously adding the result to A, so that
in the next cycle, A has been completely updated. This
is possible because multiplier hardware can be easily
modified so that as it multiplies it also adds a number
to the product. Unfortunately, this is more difficult to
accomplish with floating point arithmetic, so in the
DSP96002 floating point multiplication and addition can
be specified separately using instructions like:

FMPY D4,DS,D0 FADD DO,D1 X:(RO)+,D4 Y:(R4)+,DS

The contents of D4 and D5 are multiplied and stored
in DO. Meanwhile, the previous contents of DO (not the
result of the FMPY) are added to D1. In addition, the
two data moves occur simultaneously, affecting the val-
ues of the D4 and D5 registers for subsequent instruc-
tions. In effect, the programmer explicitly fashions the
pipeline by specifying the activity in each stage of the
pipeline.

Compare this instruction with the 320C30 parallel mul-
tiply and add, MPYF 3| ADDF 3 (see Example 18 of Part I).
In the 320C30, the operands are fully specified in the in-
struction that uses then. In the 96002, the operands are
specified (memory addresses given) in an instruction pre-
ceding the arithmetic instruction. Nonetheless, by per-
mitting parallel instructions, the 320C30 has introduced
an element of time-stationary coding.

Example 6

The NEC 77230 is similar to the DSP96002 in that mul-
tiply, add, and move instructions are specified in one
instruction. Interestingly, the assembler syntax for such
instructions attempts to mimic that of processors with
hidden pipelining. An example of a parallel multiply

8 IEEE ASSP MAGAZINE JANUARY 1888

and add instruction is:

MoV LKRO ,ROM
ADDF WRO ,M
INCBPO

INCRP;

Here, four fields can be specified on four separate lines,
and a semicolon groups the fields. The first line speci-
fies a move of two operands from memory (ROM and
RAM) into the L and K registers. Meanwhile, the cur-
rent contents (before the move) of the L and K regis-
ters are multiplied. No mnemonic is given for the
multiplication because it occurs automatically in every
cycle regardless of whether its result is used. Mean-
while, the product register M (from multiplication in the
previous instruction) is added to the working register
WRO, which acts as an accumulator. The last two lines
specify the auto-increment for the pointers to memory
(ROM and RAM) that are used in the first line. The four
fields can also be specified together on one line.

Example 7.

The AT&T DSP16 and DSP16A use a reservation table
outlined in Figure 8 for instructions with two operands
from memory. A typical instruction is:
p=x’y
The product register p from the previous multiplica-
tion is added to a0 at the same time that a new prod-
uct is formed using the contents of the x and y regis-
ters. Meanwhile, the x and y registers are loaded with
new values using the address registers r 0 and pt. This
processor only has a demand ratio of two, so two-
operand instructions consume two instruction cycles,
as shown in Figure 8. However, if the instruction is
fetched from the instruction cache, then the doubly
cross-hatched operation (the instruction fetch) is not
required, and only one cycle is consumed. Again, un-
like the DSP56001, the multiplication and addition are
specified as separate parallel operations.

al=al+p y="r0++ x="pt++

Time-stationary coding has a number of advantages.
First, the timing of a program is clearer. With interlock-
ing, it is difficult to determine exactly how many cycles
an instruction will consume because it depends on the
neighboring instructions. Second, interrupts can be
much more efficient. Since the programmer has explicit




control over the pipeline, there is no need to flush the
pipe prior to invoking the interrupt. One consequence of
this is the possibility of very fast interrupts.

Example 8

The DSP56001 and 96002 have a fast interrupt, which
takes exactly two instruction cycles. It can be used to
grab input data and put it in a buffer, for example.

2.3. Data-Stationary Coding.

Time-stationary coding resembles microcode in that
fields of the instruction specify operations in different
parts of the architecture. While it is easy to grow accus-
tomed to it, it is more natural to think of our algorithms
in a data-stationary way. In data-stationary coding, a
single instruction specifies all of the operations per-
formed on a set of operands from memory. In other
words, the instruction specifies what happens to that
data, rather than specifying what happens at a particular
time in the hardware. A major consequence is that the re-
sults of the instruction may not be immediately available
in the subsequent instructions.

Example 9.

The most dramatic examples of data-stationary coding
are the AT&T DSP32 and 32C. A typical instruction is:

rS++=a1=a0+r7"r10++r17

The address registers r7 and r 10 specify the two
operands for the multiplier. The register r17 specifies
the post-auto-increment for r 1 0. The product is added
to @0 and result stored in a1 and in the memory loca-
tion specified by r5. The instruction is easy to read
and understand, but it should be obvious that all these
operations cannot be finished within one instruction
cycle. The timing of the instruction, shown in Figure 9,
actually covers six instruction cycles. An instruction of

this type can be issued once per instruction cycle, so
only a single cycle is consumed. Instructions like this
one can be used to implement an FIR filter in one in-
struction cycle per tap. In fact, careful examination of
the reservation table reveals that the hardware resources
listed are 100 percent utilized by such a program if the
number of filter taps is large enough.

Suppose the result is to be read from memory in a sub-
sequent instruction and used as an operand. An in-
struction accomplishing this read would have to be
fetched in the fourth cycle after the multiply and add
instruction. In other words, the three instructions
fetched immediately after the multiply and add instruc-
tion cannot read the result from memory because it has
not yet been written to memory when they fetch their
operands. The pertinent restrictions, evident in Figure 9,
are summarized as follows:

* When an accumulator an is used as an operand to
the multiplier, the value of the accumulator is that
established three instructions earlier.

* When a result is written to memory, the updated
value of the memory location cannot be accessed
until four instructions later.

Although results are not ready in the next instruction,
data-stationary coding is no less efficient than time-
stationary coding. In time-stationary coding, to specify a
multiply, accumulate, and store operation on a pair of
operands requires several instructions, and the total time
to completion is the same as with data-stationary coding,
assuming a similar hardware organization. In time-
stationary coding, other operations proceed in parallel,
specified in unused fields of the multiply and accumulate
instructions. In data-stationary coding, other operations
proceed in parallel specified by neighboring instructions.

Fast interrupts are more difficult with data-stationary

IEEE ASSP MAGAZINE 9

JANUARY 1889



than with time-stationary coding, but are nonetheless
possible.

Example 10

The DSP32C has a three-cycle quick interrupt. To accom-
plish this, the chip designers inserted a second set of
pipeline registers that “shadow” the main set, storing
the processor state when an interrupt occurs. Roughly
400 bits are stored. Nested interrupts are not possible, of
course, since there is only one set of shadow registers.

2.4 Branching.

One difficulty with pipelining that we have thus far
ignored concerns branching, particularly conditional
branching. Several problems conspire to make it difficult
to achieve efficient branching.

* There may not be sufficient time between instruc-
tion fetches to decode a branch instruction before
the next instruction is fetched.

* If the program address space is large, the destination
address may not fit in an instruction word, so a
second fetch from the instruction memory may be
required. Alternatives are paging and PC-relative
addressing.

* In the case of conditional branching, the fetch of the
next instruction cannot occur before the condition
codes in the ALU can be tested.

Example 11

In the TMS32010/20/C25, in order to hide the pipelining
from the programmer, branch instructions require
several cycles to execute, where the exact number
depends on the system configuration. In the case of an
unconditional branch, the extra cycle is needed to fetch
a destination address from the program memory. In
the case of a conditional branch, the ALU condition
codes can be tested while the fetch of the destination
address proceeds.

Example 12

In the DSP16, unconditional branches consume two
cycles and conditional branches consume three.

Example 13

In the DSP32 and DSP32C, when any control group
instruction (if, call, return, goto) is executed, the in-
struction immediately following is also executed before
the branch occurs. This is called a delayed branch. For
conditional branches based on the result of a data arith-
metic (DA) operation, the condition tested will be es-
tablished by the last DA instruction four instructions
prior to the test. It is evident from Figure 9 that the con-
ditions on the adder cannot be tested in time to affect
any instruction earlier than four instructions later.

Example 14

The TMS320C30 has both delayed and multi-cycle
branches, so the programmer can choose.

Because of the inefficiencies of multi-cycle and delayed

10

IEEE ASSP MAGAZINE JANUARY 1988

branches, it is important to use the low-overhead looping
capability of the processors for tight inner loops, rather
than using branch instructions.
Example 15
The 56001 and 96001 have the best developed low-
overhead looping capability. Any number of instructions
may be included inside a loop, loops are interruptible,
and loops may be nested. The assembler syntax is
straightforward:
b0
loop body

10,END

END

Another technique used to avoid the inefficiencies of
conditional branches is conditional instructions. These
are operations other than branches that are conditionally
executed. For example, a conditional write instruction
can often be used to avoid a conditional branch.

3. THE FUTURE

As with all microelectronics, programmable DSPs have
evolved considerably in the last ten years. It is easy to ex-
trapolate the current trends and predict processors with
more memory, faster MAC times, more /O flexibility and
bandwidth, etc. But such VLSI-driven improvement is by
no means the only visible trend.

3.1. The Market.

The market for programmable DSPs remains limited to
specialized products with relatively low volume (with the
exception of modems and consumer products like the
“Julie” doll by Worlds of Wonder). However, this is likely
to change dramatically in the near future. Programmable
DSPs are likely to become standard peripherals in per-
sonal computers and workstations. The standard mi-
croprocessor used now will continue to handle operating
system tasks and interactive applications, but the DSP will
handle real-time and compute intensive tasks. In prin-
ciple, the same board with one (or a few) programmable
DSPs can be used as a modem, a general purpose number-
cruncher, a graphics processor, a speech and music syn-
thesizer, a speech recognizer, a music analyzer, a digital
audio processor, and a telephone message processor, in-
cluding voice store-and-forward. Such a product would
obviously enhance the capabilities of today’s worksta-
tions and PCs, and would broaden the market for DSPs.

3.2. Parallelism.

Many applications have such stringent real-time con-
straints that multiple DSPs must be used in concert. Sur-
prisingly, very little thought or effort has historically been
put into designing DSPs for parallel computation. There
are few features, in hardware or software, to ease the
task of synchronizing processors or accessing shared re-
sources. Fortunately, this is changing. For example, sev-
eral newer processors have controllable wait-states for
external memory accesses. This is invaluable for access to
shared memory where the access may have to be delayed



due to contention. In addition, most DSPs have extra
pins that can be tested in software. These pins can be
used to synchronize multiple processors. The TMS320C30
has specialized instructions for doing this; Tl calls it a
hardware interlock capability. Motorola facilitates the de-
sign of multiprocessor systems with the dual expansion
ports in the DSP96002.

All of these are small steps, however. An essential capa-
bility that is almost totally lacking is software simulators
capable of simulating multiple-DSP systems. System de-
signers must build first, test later. A notable exception is
Motorola, which supplies a simulator in the form of sub-
routines, which can be called from user-written code.
Each call to such a subroutine emulates the state change
of a processor in one clock cycle. A system designer
planning to use more than one DSP56001 can write a C
program that emulates the interconnection of the DSPs,
shared memory, busses, and whatever other hardware is
used (assuming the designer is willing to write emulation
code for this other hardware). At Berkeley, we are integrat-
ing Motorola’s callable simulator into a general-purpose
hardware simulator from Stanford called Thor [Tho86] in
order to get a clean user interface for designing and simu-
lating parallel DSP systems.

A more radical approach to parallel DSPs has been pro-
posed by NEC with the introduction of the uPD7281, a
data flow machine for image processing. This chip may
be simply ahead of its time, since it has not achieved
wide acceptance.

3.3 Software.

One of the main impediments to widespread use of
DSPs is that they remain difficult to use compared with
other microporocessors. Products take years to develop,
and programs take months to write even though the final
code can often be stored in less than 1K words of pro-
gram ROM. There are several reasons for this difficulty:

+ Although the performance is impressive, today’s
DSPs are barely fast enough for many real-time ap-
plications. Programs must be tuned by hand to meet
speed constraints.

* On-chip memories are small, and expansion beyond
the chip boundaries is practically limited to only one
(sometimes two) of the memory banks. Further-
more, off-chip memories that do not slow down the
processor must be fast, and hence are expensive.
Programs must be hand tuned to avoid squandering
memory.

* Compounding the above problems, DSPs often
compete with custom circuits in fiercely competitive
marketplaces, such as in voiceband data modems.
Programs must be hand tuned to minimize the over-
all hardware requirements of the systems.

One possible solution to the above problems is a good
optimizing compiler. Some C compilers have appeared
for some DSPs, but so far they do not appear to generate
efficient enough code to meet the above constraints. Op-
timizing C compilers for the forthcoming generation of

floating-point DSPs looks promising, however [Har88]
[Sim88]. Regardless of their efficiency, the C compilers
will inevitably be used for large applications of the DSPs,
which are not practical to code by hand, such as graphics.

For digital signal processing, it is doubtful that good C
compilers alone are the complete solution. Higher level
design environments are being constructed to permit
rapid prototyping (for algorithm development) and effi-
cient code generation (for deployment in a competitive
marketplace). The most promising systems under devel-
opment are based on block-diagram programming, in
which the user graphically constructs a block diagram of
the algorithm. The user can use standard blocks from a
supplied library, or define new blocks, possibly even in
C. Burr-Brown has already demonstrated a preliminary
code generator for the AT&T DSP32 that begins with a
high-level block-diagram description of the algorithm. It
uses the same interface as their DSPlay signal processing
simulator. NEC is also known to be developing a system
for the 77230. At Berkeley, we are developing a block-
diagram programming environment called Gabriel that
systematically manages real-time constraints, changes
in sample rates, recurrences (feedback), conditionals,
and iteration, and is capable of generating code for mul-
tiple processors [Lee87b]. A Gabriel screen is shown
in Figure 10. This system is intended to be retargettable,
and we have demonstrated its basic capabilities for the
DSP56001 and DSP32.

Block-diagrams have two important advantages. First,
they are a natural description of many DSP algorithms.
Second, they can potentially be automatically partitioned
for execution on parallel processors [Lee87a]. The user
need not know the details of the architecture, or even
the number or type of DSPs. Block-diagram languages
fit the data-flow model of computation, about which
considerable theory has been developed. Generalizing
these techniques to get the full expressive power of a
programming language, however, is still a challenging re-
search area.

3.4 Simpler Processors.

The dominant trend in DSPs is towards complexity, not
simplicity. Every new device has features that the previ-
ous ones lacked, such as floating point, DMA, vectored
interrupts, bit-reversed addressing, zero-overhead loop-
ing, and more extensive 1/0. With all these features,
DSPs are starting to tread on the turf of microproces-
sors. Unfortunately, this trend ignores the market that
spurred the development of DSPs in the first place,
which required arithmetic performance near the limits of
what current technology could supply. A market exists
for simple and fast DSPs. Although many manufacturers
appear to be moving away from this market, some are
embracing it. For example, the Hitachi DSPi and AT&T
DSP16A are high speed chips with more limited function-
ality than the current generation of floating-point DSPs.

3.5 Semi-Custom Processors.

Many DSPs can be purchased in two versions, one with

11

JANUARY 1988 |EEE ASSP MAGAZINE



program RAM, and the other with mask-programmed pro-
gram ROM. A typical development uses the first version
for code development and migrates to the second version
when ready for production. A DSP with mask-programmed
ROM can be considered an application-specific IC.

Of course, the contents of the program memory may
not be the only feature of the DSP that the user wishes to
customize. It would be useful, for example, to customize
the sizes of the memories. VLSI real-estate could be freed
for this purpose by eliminating parts of the DSP that are
not used. Possibilities include:

¢ Trim the arithmetic word width to what is actually
needed.

* Remove the multiplier for low-speed applications,
or applications that make little use of it, and replace
with shift-and-add code.

12

IEEE ASSP MAGAZINE JANUARY 13989

sxmutatm of
\t the top right is

* Remove 1/O facilities when they are not used, such
as DMA controllers.

* Customize barrel shifters to only perform the shifts
actually used in the program.

* Customize the size of the register file.

* Eliminate bit-reversed or indexed addressing, if it is
not used.

* Customize or eliminate the instruction cache, de-
pending on whether it is required to meet real-time
constraints.

¢ Customize the size of the address space, and hence
the width of registers and busses and the number of
pins.

A user would develop the application using a high-level

description such as C, a block diagram language, or some
other language, and given a real-time constraint, a com-



piler would automatically determine the required architec-
ture parameters.

Automated layout programs have been demonstrated
that are capable, in principle, of generating layouts that
are parametrized in these ways. For example, a system
called Lager that has many of these capabilities is under
development at Berkeley [Pop85].

The idea of customizing an existing architecture has its
limitations. An alternative approach is to automatically
synthesize an architecture well suited in every way to the
application. This approach appears to be most promising
for applications with extremely high performance require-
ments and relatively low complexity, such as video-rate
algorithms. The Cathedral project at KUL (Katholieke Uni-
versiteit Leuven) is an example of a research effort aimed
in this direction [Cat88].

Although automatic layout has improved dramatically
in recent years, there are still many difficult problems
that remain to be solved before these techniques are
fully practical. But the progress thus far is encouraging.

3.6. Pipeline Interleaving.

As discussed above, pipelining introduces a special set
of difficulties that are either born by the architecture de-
signer or by the programmer. Three techniques for dealing
with pipelining are described above, hiding it, time-
stationary coding, and data-stationary coding. Hiding the
pipelining completely requires compromising perfor-
mance. Time-stationary coding resembles microcode and
can be difficult to generate (for either humans or compil-
ers). Data-stationary coding has artifacts (called hazards)
such as delayed data validity that again make code
difficult to write. A fourth solution that has not yet been
implemented in any commercial DSP is pipeline inter-
leaving [Lee87c].

The idea is an old one, dating back to the 1960s. Con-
sider the following strategy for writing code on a processor
such as the AT&T DSP32C which uses data-stationary cod-
ing and extensive pipelining. Instead of writing a single
in-line instruction stream, alternate instructions from
three or four reasonably independent instruction
streams, as illustrated in Figure 11. In other words, begin
by identifying operations that can proceed in parallel.

.ructions from independent tasks can be

roome pipelining hazards.

Then partition the register set among these applications,
and write code for each application, ignoring pipeline
hazards. Then interleave the code so that pipeline haz-
ards become irrelevant because sufficient time passes be-
tween any two instructions in one stream for results to be
valid. The DSP32 conveniently provides a relatively large
number of address registers (15) and accumulator regis-
ters (4) so that such partitioning is viable.

The main advantage of the above strategy is that the
programmer can ignore the pipeline, but the architecture
does not suffer the compromises that result from hiding
the pipelining. However, a serious problem remains.
Suppose that one of the three or four interleaved instruc-
tion streams requires a branch. Unfortunately, there is
only one program counter in the DSP32, so all instruction
streams must branch together. A simple solution is to in-
troduce multiple PCs, one for each instruction stream.
This technique is called pipeline interleaving.

Pipeline interleaving transforms a single DSP with data-
stationary code and pipeline hazards into multiple pro-
cessors (called processor slices) that have no pipeline
hazards and actually share the same hardware, except
registers. A pipeline interleaved architecture that can be
built with conservative technology is described in detail
in [Lee87c].

Although pipeline interleaving removes pipeline haz-
ards, it introduces new problems. The algorithm must be
partitioned for parallel computation. One proposal is to
use the data flow properties of block-diagram languages,
as described in [Lee87d] to automatically (at compile
time) partition and synchronize the task.

4. ACKNOWLEDGEMENTS

The author gratefully acknowledges the careful reading
and thoughtful comments of Jim Boddie, Craig Garen,
and John Hartung from AT&T, Philip Goldworth and T. J.
Shan of Fujistu, Kenji Kaneko from Hitachi, Bryant
Wilder, Kevin Kioker, and Garth Hillman from Motorola,
Takao Nishitani of NEC, and Panos Papamichalis and Ray
Simar from Texas Instruments. Other helpful suggestions
were made by Bob Owen. Most importantly, the editor in
chief of the ASSP Magazine, Tom Alexander, took a great
interest in this paper and was extremely helpful. Any re-
maining errors are entirely the fault of the author.

REFERENCES

[Cat88] F. Catthor, ). Rabaey, G. Goossens, J.L. Van
Meerbergen, R. Jain, H.]. De Man, and J. Vandewalle,
“Architectural Strategies for an Application-Specific
Synchronous Multiprocessor Environment,” EEE Trans.
ASSP, February 1988, 36(2).

(Har88] ). Hartung, S. L. Gay, and S. G. Haigh, “A Practical
C Language Compiler/Optimizer for Real-Time Imple-
mentation on a Family of Floating Point DSPs,” Pro-
ceedings of ICASSP, pp 1674-1677, New York, April, 1988.

[Lee87a] E.A. Lee and D.G. Messerschmitt, “Static
Scheduling of Synchronous Data Flow Programs For

13

JANUARY 1989 |EEE ASSP MAGAZINE



Digital Signal Processing,” IEEE Trans. on Computers,
January 1987, C-36(2).

[Lee87b] E. A. Lee and D. G. Messerschmitt,”Synchronous
Data Flow,” IEEE Proceedings, September, 1987.

[Lee87c] E.A. Lee and D. G. Messerschmitt, “Pipeline In-
terleaved Programmable DSPs: Architecture,” IEEE
Trans. on ASSP, September, 1987 ASSP-35(9).

[Lee87d] E. A. Lee and D. G. Messesrschmitt, “Pipeline In-
terleaved Programmable DSPs: Synchronous Data Flow
Programming,” IEEE Trans. on ASSP, September, 1987
ASSP-35(9).

[Pop85] S. Pope, ). Rabaey, and R. W. Brodersen, “An In-
tegrated Automatic Layout Generation System for DSP
Circuits,” IEEE Trans. on Computer-aided Design, July
1985 CAD-4(3) pp. 285-296.

[Sim88] R. Simar Jr. and A. Davis, “The Application of
High-Level Language to Single-Chip Digital Signal Pro-
cessors,” Proceedings of ICASSP, pp 1678-1681, New
York, April, 1988.

[Tho86] VLSI/CAD Group, “Thor Tutorial,” Stanford Uni-
versity, Stanford, CA, 1986.

Edward A. Lee has been an assistant professor
in the Electrical Engineering and Computer
£ Science Department at U.C. Berkeley since
July, 1986. His research activities include par-
| allel computation, architecture and software
techniques for programmable DSPs, design
_ environments for real-time software devel-
. opment, and digital communication. He has
_ taught short courses on the architecture of
[l programmable DSPs and telecommunications
applications of programmable DSPs. He was a recipient of the 1987
NSF Presidential Young Investigator award, an |BM faculty develop-
ment award, and the 1986 Sakrison prize at U.C. Berkeley for the
best thesis in Electrical Engineering. He is co-author of “Digital Com-
munication”, with D.G. Messerschmitt, Kluwer Academic Press,
1988. His B.S. degree is from Yale University (1979), his masters (5.M.)
from MIT (1981), and his PhD from U.C. Berkeley (1986). From 1979
to 1982 he was a member of technical staff at Bell Labs in Holmdel,
New Jersey, in the Advanced Data Communications Laboratory, where
he did extensive work with early programmable DSPs, and explora-
tory work in voiceband data modem techniques and simultaneous
voice and data transmission.

14

IEEE ASSP MAGAZINE JANUARY 1989



