VLSI Array Processors

High speed signal processing depends critically on'paralllel
processor technology. In most applications, general-purpose
parallel computers cannot offer satisfactory real-time pro-

cessing speed due to severe system overhead. Therefore, for.

real-time digital signal processing (DSP) systems, special-
purpose array processors have become the only appealing
alternative. In designing or using such array processors, most
signal processing algorithms share the critical attributes. of
regularity, recursiveness, and local communication. These

properties are effectively exploited in innovative systolic and:

wavefront array processors. These arrays maximize the

strength of very large scale integration (VLSI) in. terms of

intensive and pipelined computing, and yet circumvent its
main limitation on communication. The application domain
of such array processors covers a very broad range, including
digital filtering, spectrum estimation, adaptive array process-
ing, image/vision processing, and seismic and tomographnc
~ signal processing. This article provides a general overview of
VLSI array processors and a unified treatment from algorlthm,
architecture; and appllcatlon perspectives.

1. INTRODUCTION

VLSI and Dtgttal Signal Processmg—A Symbiotic
Relationship .

The practlcahty of algorithms for many. Digital Signal
Processing (DSP) appllcatlons will_ ultimately be deter-
mined by their computational feasibility. It depends criti-
cally—particularly, for. real-time sngnal processing—on
the parallel processing capabilities; in both speed and vol-
ume, offered by state-of-the-art computing machines. The
availability of low-cost, high-density, fast-speed VLS| de-
vices, and of the emerging computer-aided-design facili-
ties, presages a major breakthrough in the future design of
massively parallel processors. Currént paralle] computers

incur severe system overhead; therefore, VLSI-oriented”

array processors are most appealing for high-speed signal

processing. The design of such. systems requires, how--

ever, a broad knowledge of the relationship betweeen
parallel computing algorithms and the structures of array
hardware and software. '

The basic discipline in a top- -down de5|gn methodology
(as depicted in Figure 1-1) depends on a fundamentai un-

*This research was supported in part by the National Science Founda-
tion under Grant ECS-82-13358, and by the Army Research Office
under Grant DAAG29-79-C-0054, .

IEEE ASSP ‘MAGAZINE . .JULY - 1885

4

S.Y. Kung

derstanding of algorithim, architecture, and application.
The boundary between software and hardware has be-
come increasingly vague in the environment of VLSI sys-
tem’design. This enhances the already prevailing roles of -
the algorithm analyses and the mappings of algorithms to -

‘architectures. Therefore, a very broad spectrum of inno-

vations Will be required for obtaining highly parallel array
processing. These innovations will include new ideas on
communication/computation trade- offs, parallelism ex-
tractions, array architectures, programming techniques,
processor/structure primitives, and numerical perfor-
mances of DSP algorithims.

This article presents the major principles of the design
of VLSI array processors for real-time signal/image pro-
cessing requirements. In Section 1, the major impacts of
VLSI technologies are reviewed. A special focus is placed
on communication problems inherent: in VLSI. VLSI-
oriented array processors that circumvent the commu-
nication constraints are discussed. In Section 2, several

“types of array processors important to DSP-applications.

are proposed. In Section 3, mappings of algorithms onto
array architectures are addressed, together with the issues
of coping with the communication constraints and im-
proving' pipelining rates. In Section 4, new array algo-
rithmic criteria and analyses tailored to the array process-
ing environment are presented. In Section 5, the imple-
mentation and design considerations .of DSP array pro-
cessor systems are discussed. Finally, an example of DSP
applications of array processors is given in Section 6, fol-

Iowed by a concluding remark in Section 7.

1.1. Impacts of VLSI device technology

‘VLSI archltecture enjoys the major advantage of being
very scalable technolog:cally [17]. This means that the ef-
forts of architecture redesign will be very mirior when the
device technology is scaled down' to ultra-submicron
level. However, as chip size is increased, the interconnec- -
tion problems will become very severe. Before long, chip
cost, performance and speed will be determined primarily
by interconnect delay and area. Therefore, VLS| device
technology does not simply offer a promising future, but
also creates some new design constraints, For example,
the modularity of building blocks and the alleviation of the -
burden ‘of global interconnection are often essential re-
quirements in VLSI design.

Scaling effects .
In the scaling of geometry, we often assume that all the

0740'-746‘7/85/’0700'-0004$01 .00©1985_|EEE

dimensions, as well as the voltages and currents on the
chip, are scaled down by a factor «. (A value of « greater
than 1 implies that sizes or levels are shrinking). When
scaling down the linear dimensions of a transistor by «, the
number of transistors that can be placed on a chip of given
size'scales up by o?. Figure 1-2 depicts the effect of scaling
-down a conductor and a MOSFET transistor by a factor «.

If the average interconnection length is not scaled down

with the same factor e, the interconnection delay may’

actually increase. When the delay time of the circuit de-
pends largely on the interconnection delay (instead of the
logic gate delay), minimality and localization of inter-
connections will become essential factors for an effective
realization of the VLSI circuits.

1.2. VLS! Architectural Design Principles

VLS architectures should exploit the potential of the
VLS technology and-also take into account (i) the layout
constraint and the resultant interconnection costs in terms
of area and time, and (ii) the cost of VLSI processors as
measured by silicon area and pin count. VLSI architecture
design strategies stress modularity, regularity of dataand
control paths, local communication, and massive paral-
lelism. Some design principles are summarized below.

Principle of Homogeneity

In VLSI, there is an emphasns on keeping the overall
architecture as regular and modular as possible, thus re-
ducing the overall complexity. For example, memory and
processing.power will ‘be relatively cheap as a result of

~high regularity and modularity. Even in the communica-
tion-orwiring, a careful algorithmic study may help create
some form of regularity. This depends on special arrange-
ments, realized inthe course of ‘topological mappings
from algorithms to architectures.

Principle of Pipelining
‘In many DSP applications, throughput rate often repre-

sents the overriding factor dictating system performance. -

In'order to optimize throughput, a different design choice
is often made than that of minimizing the total processing

-time (latency). Pipeline techniques fit naturally in.our aim.

of improving throughput rate. Suitable pipelining tech-
niques are now well-established, particularly for most
signal processing algorithms. A prominent example is the
systolic/wavefront array discussed in Section 2. :

For signal processing arrays, pipelining at all levels
should be pursued. It may bring about an extra order of
magnitude in performance with very little additional hard-
ware. Although most of the current array processors stress
only word level pipelining, the new trend is to exploit
the potential of multiple-level pipelining (i.e., combined
pipelining in all the bit-level, word-level, and array-level
granularltles)

Principle of Locality

The principle of locality is seen at every level of VLSI

design [18]. In systolic arrays, both spatial locality and tem-

poral locality are stressed [9]. The notion of locality can
have two meanings in array processor designs: localized

-data transactions and localized control flow. In fact, most

recursive signal processing algorithms permit both locality
features; and they are fully exploited in the design of
wavefront arrays, as we shall elaborate in Section 2..

Communication is the Key Factor

In VLS| technology, computations per se are becom-
ing easily affordable. Therefore, the most critical factor in
VLSI:design is communication. Architectures that balance
communication and computation, and that circumvent
communication bottlenecks with minimum hardware cost,
w1|| eventually play a dommatmg role in VLS| systems. .

2. VLSI ARRAY PROCESSORS

Until recently, computation-intensive tasks were han-

~ dled by high performance supercomputers, inciuding

pipelined:computers, array processors, and multiproces-
sor systems. The development of these computer systems
has involved a thorough exploration of parallel comput-
ing, efficient programming, and resource optimization:
However, the general-purpose nature of these machines
has led to a complicated system organization and severe
system overheads. These machines are not suitable for
real-time signal processing where avery high throughput
rate is absolutely essential.

A solution to the real-time requirement of signal pro-
cessing is to use special-purpose array processors, and to
‘maximize the processing concurrency by either pipeline
processing or parallel processing or both. As long as com-
munication in VLS| remains restrictive, locally-intercon-
nected arrays will be of great importance. An increase of
efficiency can be expected if the algorithm arranges for a
balanced distribution of work load while observing the
requirement of locality, i.e. short communication paths.
These properties of load distribution and information flow -
serve as a guideline to the designer of VLSI algorithms,

.and eventually lead to new designs of architecture and

language.
The first such special-purpose VLS| architectures are
systolic and wavefront arrays, which boast tremendously

- massive concurrency. The concurrency in the systolic/

wavefront arrays is derived from pipeline processing or
parallel processing or both. These types of processing are

-illustrated in Figure 2-1. The notion of combined pipeline

and parallel processing will become more evident when
we demonstrate in a moment how parallel processing
“computational wavefronts” are pipelined successively -
through processor arrays. .

Array Processors and Algorithm Expressions
A fundamental issue in mapping algorithms onto an

 array is to express parallel algorithms in a notation than can

be easily understood and compiled into efficient VLSI array
processors. Thus a powerful expression of array algo-
rithms will be essential to the design of arrays. This paper

JULY 1985 |EEE ASSP MAGAZINE 5

proposes primarily three ways of array algorithm expres-
sion: signal-flow-graph (SFG), systolic ‘and wavefront
expressions.

2.1. Signal Flow Graph (SFG)

A Signal Flow Graph, consisting of nodes-and edges
[14,9], is illustrated in Figure 2-2. The SFG representation
has been popularly used for signal processing flow dia-
grams, such as FFT, digital filters and many other domains
of signal and system applications.

The descriptions of array processing activities, in terms
of the SFG representation, are often easy to comprehend.

A typical example used for illustrating a two-dimensional -

array operation is matrix multiplication, as dlscussed in the
‘BOX 1, Figure 2-3.

The abstractlon provided by the SFGis very powerful
and easy to.use, and yet the transformation of an SFG de-
scription to ‘a wavefront or systolic array can be accom-

plished automatically, as discussed in Section 3.1, In fact,

asystolic array can be considered an SFG array in combina-
tion with pipelining and retiming. This is.the reason why
we first map parallel algorithms onto SFG arrays and then
convert them into systolic arrays.

2.2. Systolic Array

The ‘systolic array is very amenable to VLSI imple-
mentation. It is especially suitable to a special class of
computation-bound algorithms, taking advantage-of their
regular, localized data flow. “A systolic system is a network

of processors which rhythmically. compute and. pass data

through the system: Physiologists use the word ‘systole’ te
refer to the rhythmically recurrent contraction of the heart
and arteries which pulses blood through the body. In a
systolic computing system, the function of a processor is
analogous to that of the heart. Every processor regularly
pumps data in and out, each time performing some short
computation, so thata regular flow of datais kept upin the
network” [10]. \

For example, it is shown in [10] that some basic “inner
product” processing elements (PE's)—each performing
the operation Y.<~ Y + A * B—can be Jocally connected
to perform digital filtering, matrix multiplication, and
other related operations. In general, the data movements
in a systolic array are prearranged and described in terms
of the “snapshots” of the activities. (For examples, see
BOX 1, Figure 2-4.)

A systollc array often represents. a direct mapping of
computations onto processor arrays. It will be used as an
attached processor of a host computer (cf. Section 5). The
systolic array features the important properties of modu-
larity, regularity, local interconnection, as well as a high
degree of pipelining and highly syn¢hronized multi-
processing.. It is also scalable architecturally, i.e. the size
of the array may be mdeflnltely extended as long as the
system syn_chronlzatlon can be maintained, There is exten-
sive literature on the subject of systolic array processing,
and the reader is referred to [6] and the references therein.

One problem, however, is that the data movements in a
systolic array are controlled by global timing-reference

8 IEEE ASSP MAGAZINE JULY 1985

'APPLICATION

p}loratlon df the overall lmphcatlons of VLS
lsmphnary dISGUSSIOH on” application, algorithm
ssary In fact, integration will b
Sl. “This' means that innovations wi
y broad spectrum of disciplines, inclu
algor'lthm analyses; ‘par‘aliehsm extractlons, array

“beats.” In order to synchronize the activites in a systolic -
array, extra delays are often used to'ensure correct timing.
More critically, the burden of having to synchronize the
entire computing network will eventually become intoler-

“able for very-large-scale or ultra-large-scale arrays.

2.3. Wavefront Array

A simple solution to the above-mentioned problems is
to'take advantage of the control-flow locality, in addition
to the data-flow locality, inherently possessed by most
algorithms of interest., This permits a data-driven, self-
timed approach to array processing. Conceptually, this
approach substitutes the requirement of correct “timing”
by correct “sequencing.” This concept is used extenswely

in dataflow computers and wavefront arrays.

CONDUCTOR

— INSULATOR

b

 Figure 1-3,

. factor a: Since the cross-sectional area of the conductor is decreased by a factor a®, the resistance per unit length
.+ will increase by a similar factor. If the length of the conductor is scaled by « (as simple scaling implies), then the

connection scales down by a. The scaling up of resistance and the scaling down of capacitance cancel exactly,

nnect delays rather than device delays.

ving the RC time constant and the interconnect delay unchanged. Since gate delays decrease while interconnect
delays remain constant with scaling, the speed at which a circuit can operate is eventually dominated by inter-

‘ , ta)’ ‘Sbalihg of a MOSFET Transistor by a factor a. The switching delay of a transistar is scaled down ..
at least by «, due to the fact that the channel length is decreased by a factor a..(b) Scaling of a conductor by a-

S net increase of resistance is in proportion to . However, scaling down also implies that the capacitance of a fixed '

JULY 1985 IEEE ASSP MAGAZINE

7

Array processors derive a massive concurrency from both parallel and plpelme processnng schemes
I'processing means that all the proces\-:.es definedin terms of the data (B3,) and the instructions (nl—
rectly access the m processmg in parallel and keep all the processors busy. (b)- Pipeline processors means
‘that a"procsss is decomposed into many subprocesses, which are pipelined through m processors, i.e., m segments .
in.a chain, and each subprocess will be processed in ‘succession. For each subprocess coming out of the
) there will be'a processor vacant and ready to receive and handle a new subprocess lmmedlately Therefors, v
the m rocessors can again be kept busy all the t|me by t:he plpehne technlque.

: Segment 2 b

A dataflow multiprocessor [5] is an asynchronous, data-
driven multiprocessor that runs programs expressed in
data-flow graph form. Since the execution of its instruc-

tions'is “data driven,” i.e.; the triggering of instructions

depends only upon the availability of operands and re-

sources required, unrelated instructions can be executed

concurrently without interference. The prmcnpal advan-
tages of data-flow multiprocessors are simple represen-
tation of concurrent activity, ‘relative independence’ of

of centralized control and global memory.

However, for a general-purpose -dataflow multiproces-
sor, the interconnection and memory conflict problems
remain very critical. Such problems can be greatly allevi-
ated if modularity and locality are incorporated into data-

‘flow multiprocessors. This motivates the concept of the

Wavefront Array Processors (WAP).

The derivation of a wavefront process consists of three
steps: (i) the algorithms are expressed in térms of a se-
quence. of recursions;: (ii) each of -the recursions. is
mapped to a corresponding computatlonal wavefront;
and (iii) the wavefronts are successively plpelmed through

8 . IEEE - ASSP MAGAZINE JULY 1985

the processor array. (A simple matrix multlpllcatlon ex-

, ample is discussed in BOX.1.)

As a justification for the name “wavefront array,” we
note that the computational wavefronts are similar to elec-
tromagnetic wavefronts, since each processor acts as a
secondary source and is responsible for the propagation
of the wavefront. The pipelining is feasible because the
wavefronts of two successive recursions will never inter-

sect (by Huygen's’ wavefront principle), thus avoiding any
individual PE’s, greater-use of plpelmmg, and reduced use -

contention problems. It is even possible to have wave-
fronts propagatlng in several different fashions. For ex-
ample, in the extreme case of non-uniform clocking, the’
wavefronts ‘are actually crooked. What is necessary and
sufficient is that the order of task sequencing be correctly

followed. The correctness of the sequencing of the tasks

is ensured by the wavefront principle [11]. .

The wavefront processing utilizes both the localities of
data flow and control flow inherent in many signal proces-
sing algorithms. Since there is no need for synchronizing
the entire array, a wavefront array. is truly architecturally
scalable. In fact, it may be stated that a wavefront array is -
a systolic array in combination with the dataflow principle.

DR MATRIX MULTIPLICATIONS

“illustrated by the example of the matrix multiplication |
is used to |Ilustrate SFG, systolrc, and wavefront array algorithm. The topology of the matrix multiplication algo-
] sors. “rithm can be mapped naturally onto the square, orthog-
A= {ay}, B = {by}, and C=AXB= {c.,} all be onal N X N matrix array of the Wavefront Array Processor

rices, The matrix A can be decomposed into (WAP), as in Figure 2-5. To create a smooth data move-
A nd matrrx B mto rows B,, and therefore, . ment in a localized communication network, we propose |
£ -, the notion of the computational wavefront. A wavefront in |
a processsor array corresponds to a mathematical recur-|
2 'sion in the algorithm. Successwe plpelimng of the wave-;

_ the computation of all recursions. r

The computational wavefront for the first recursron inj
. matrix multiplication is now exammed more elaborately.
Suppose that the registers of all the processing elements
(PE s) are. 1n|t|ally set to zero:

(3l : c“” 0 for all (i, j) _
The entries of A are stored in the memory modules to thez-
v " left (in columns), and those of B in the memory modules;: '
“‘on the ‘top (in rows). The process starts with PE (1 1) and‘

. - Cm C(O) i+ . * b11
otron of SFG array processmg aIIows an extensrve .
oadcastmg, since a node or a zero-delay edge is 'S computed The computatlonal activity then. propagates
red to be delay-free. As a result, a very straight- to the “e'ghboms PE's (1,2) and @, 1)/ which W'“

rd SFG array for the matrix multiplication algorithm execute:

. Cmn = C(°)12 +. as1* bee i
and

ol C(0)21 + ax * bn ' ’

n results?A popular way to give a demonstration is down the processor array. Once the wavefront sweeps
.lsplay the space-time activities in the first few con- through all the cells, the first recursion is complete. As the|
utive “beats,” like those displayed in Flgure 2-4. If the first wave propagates, we can execute an identical second
ign is correct, the pre-arranged data will meet the des- recursion in paraliel by pipelining a second wavefront jim-
ated partners, perform the appropriate operations, and mediatefy after the first one. For example, the (1,1) pr
yield desired. “products.” The complete activities, as well cessor will execute '

.as the general rule, can then be derived by induction. A
mple (and possibly automatic) conversion from an SFG
y into a systollc array, which may alleviate the burden
erlflcatlon, |s dlscussed later in thls sectron

vefront Array Processmg S L ' c®y = ap * by + Ao % by ...+ Akt by

2) o~
c?y'= ¢V + ap ¥ by

Thenotron of a computatlonal wavefront is also well and so on.

JULY 1885 IEEE ASSP MAGAZINE 9

r‘e 2—2[b)]

; . Examples of Signal Flow Greph notation (a] An Operatuon Node wnth two mputs and two outputs;

 Edge as a Delay Operator. In general, a node is often denoted by a circle representing an arithmetic or logic
uch as muitiply, add, etc. performed with zero delay, (see Figure 2—2(a)). A node is considered to be
inless otherwise specified. In fact, the SFG representation derives its power from the assumption that
computations in l:he nade are delay free; warranting srmpler‘ snapshot descriptions: than'the systohc counter-
part. Consequently, the' task of tracing the detailed space-time activities associated with pipelining is simplified, An
ge, on the other hand, denotes either a functionora delay. Unless otherwise specified, for a large class of signal
c'essmg SFG* s, ‘the: followmg conventuons are adopted for convenience. When an edge is labeled with a capital
ter D (or D', ED _etc.), 1t urepresents a tume—delay operator' with delay -time . D

~X(n) >

. X(n-1)

- Q

vm

“lar-0D’', 20, etc.) (see

3. MAPPING ALGORITHMS ONTO ARRAYS'

3.1. Systolization of SFG Computing Networks

A Cut-set Systolization Procedure [9]

A cut-set in an SFG is a minimal set of edges that par-
titions the SFG into two parts. The systolization procedure
is based on two simple rules:

Rule (i), Time-scaling: ‘All delays D may be scaled, i.e.,

D — aD, by a single positive integer a. Correspondingly, -

the input and output rates also have to be scaled down by
a factor . The time-scaling factor (or, equivalently, the
slow-down factor) « is determined by the slowest (i.e.
maximum) loop delay in the SFG array.

Rule (ii). Delay-Transfer: Given any cut-set of the SFG,
-we can group the edges of the cut-set into in-bound edges

and out-bound edges, depending upon the directions as-

signed to the edges. Rule (ii) allows advancing k time-units
on all the out-bound edges and delaying k time-units on
the in-bound edges. It is clear that, for a (time-invariant)
SFG, the general system behavior is not affected because
the effects of lags and advances cancel each other in the
overall timing. Note that the input-input and input- output
. timing relationships will also remain exactly the same only
if they are located on the same side. Otherwise, they
should be adjusted by a lag of +k time-unitsoran advance
of —k time-units.

10

IEEE ASSP MAGAZINE JULY 1985

As an illustration, with reference to the BOX, Figure 2-3,
the dashed lines indicate a set of possible cuts. A simple
procedure involving delay-transfer of one time-unit (D)
yields the systolic array shown in Figure 2-4.

Example: Multiplication of a Banded Matrix

and a Full Rectangular Matrix

“Let us look at a slightly different but commonly encoun-

tered type of matrix multiplication problem. This involves

a banded Matrix A that has nonzero elements only on a
finite “band” along the diagonal. Consider the product of

“a banded.Matrix A, of size N x N, and bandwrdth P,and a

rectangular Matrix B of size N x Q:

doxxx , XX X X X
X XXX Cb XX XXX
AB= | XXXXX° X X X X X
XX XXX XX XXX
XXXXX | XXXXX
XXX || XXXXX
_‘¢ooooo‘ XX XXX
eeee || socee
| ceoe || ooooo_

(A banded Matrix A is one which has non-zero elements

only on a Finite “band” along the diagonal.)

This situation arises in many application domains; such

as DFT and time-varying (multi-channel) linear filtering. In ~

most applications, N >> P and N >> Q; therefore, it.is
very uneconomical to use N X N arrays for computing
C=AXB ‘ :

Fortunately, with a slight modification to the SFG in Fig-
ure 2-3, the same speed-up performance can be achieved

with only a.P ,>i Q rectangular array (as opposed to an
N x N array). This is shown in Figure 3-1(a).

A Systolization Example .
1f local interconnection is preferred, the proposed pro-

cedure can then be used to systolize the SFG array in Fig-
ure 3-1(a) and yield the data array as depicted in Figure

«Figure 2—-3:. An SFG Array for Matrix Multiplication: = A straightforward SFG array design is'to broadcast the

columns A and rows B; (cf. Egns. (2) and (3)) instantly along a square array, such as the 4 X 4 array shown in the_
- figure. Multiply the two data meeting at node (i, j) and add the product to ¢, the data value currently residing in
~a register in_node (i,). Finally, the new result will update the register via a loop with a delay D and get ready to
.interact with the new arriving operands. As all the column and row input data continue to arrive at the riodes, all

he outer products will be sequentially summed. Although this design is not directly suitable for a VLS! circuit design
Jue to the use of global communication, it may be converted to a systolic array, as shown in Figure 2—4, or a
: wavfefr'on_t,arr‘ay,k shown in Figure 2-5. A simple conversion strategy will be provided in Section 3.

I

JULY 1985 |EEE ASSP MAGAZINE 11

3-1(b). The systolization procedure is detailed below:

(i) Time-scaling: According to Rule (i) above, the slow-
down factor « is determined by the maximum loop delay
in the SFG array. Referring to Figure 3-1(a), any loop con-
sisting of one up-going and one down-going edges yields
a (maximum) delay of two. This is why the final pipelined

systolic array has to bear a slow-down factor a = 2. The

pipelining rate is 0.5 word per unit-time for each channel.

(i) Delay Transfer: Apply Rule (ii) above to the cut-sets
shown in Figure 3-1(a). The systolized SFG will have one
delay assigned to each edge and thus represents a local-
ized network. Also based on Rule (i), the inputs from

m different columns of B and rows of A will
he array. This is why' some extra zergs are in

\ y ! pli . For this example,
opology for the matrix multlphcatlon problem. The figure specifically shows a 4’ X 4 array of processing
(PE's), All the PE's (represented by the square boxes) uniformly consume and produce data in one single
snapshot“ of the activities — the mput data (from matrices A and B, appearing at the left
top parts of the figure) are pre-arranged in-an orderly sequence. The € data stay temporamly within the PE'’s
be pumped out from one side of the array. Due to the systolization rules discussed in Section 3, the inputs
e to be adjusted by a certain number of delays before arriving at
duced here. (To become more convinced, the reader might want’
it out with several consecutive shapshots of the data movements.) In general, the major characteristics of
tolic arrays are [91 (i) synchrony: the data is rhythmically computed (timed by a global clock) and pumped through
ﬂor‘k (i) regularity, modulamty and spatual locality of mterconnectlons, (i temporal lacality, and (iv] effective

twi dlmensmnal square ar‘r'ay forms a

IEEE ASSP MAGAZINE JULY 1885

_ MEMORY MODULES

"FIRST WAVE — — ——
SECOND WAVE ------- ~ |
&=UNIT TIME OF DATA TRANSFER
T=UNIT TIME OF ARITHMETIC OPERATION
- ‘Figure 2-5: . Wavefront processing for Matrix Multiplication.. In this example, the wavefront array consists of
N xX"N protessing elements with regular and local interconnections. The figure shows the first 4 X 4 processing
. elements of the array. The computing network serves as a (data) wave propagating medium. Hence the hardware
will have to support pipelining of the computational wavefronts as fast as resource and data availability allow, which
an often be accomplished simply by means of a handshaking protocol, such as that proposed in [111. The (average)
- time interval (T) between two separate wavefronts is determined by the availability of the operands and operators.
* In this case, T is equal to the time needed for the arithmetic operations: multiply-and-add. The speed of wavefront
~propagation is determined by the time interval A, which in this case is equivalent to the data transfer time. In general,
“the major characteristics of wavefront arrays are (i) self-timed, data-driven computation, meaning that no global
‘clock is needed; (ii) regularity, modularity and spatial locality of interconnections; and liii) effective pipelinability.

JULY 1985 IEEE ASSP MAGAZINE 18

‘ ki Ca4 023

dsa_

Flgur'es—- 1.

©+ 0 0 6y 0
“. O OF’S,’OE’,”‘GHV O g, O
050 60 6 0 O

. 044 Q22 Oy b O b O
L 41 33
o010 Ces Qi Oy Oz 7 by O by 024
: o ; | S 0 'b22- 0 b14
bl .;.’” G“ 053 942 _031 - : .

w0 0

o))

(@l An'SFG'A'rréy far matrix multiphbatiori involving a banded matrix. The left memory module will store

: 0 the matrix A along the band-direction, (see Fsgure 2-3) and.the upper-module will store B the same as before.
‘Note that the major modification to the array is that, between the recurs»ons of outer products, there shouldbe

an’ upwar‘d shift of the partial sums. This is because the input matmx A |s Ioaded ina skewed fashlon The final result
c) W||| be output from the I/O ports of the top-r'ow PEs S e

'} o (3)] The systohc arr‘ay desngn as a’ result of applylng the systohzatlon procedure to the F|gure 3—1 Ea] Note that the
pupellmng rate is proportlonal to a‘1, and that @ = 2 in thlS example ‘ :

different columns of B and rows of A will have to be ad- .

justed by a certain number of delays before arriving at the
array. By counting the cut-sets involved in Figure 3-1(a), it
is clear that the first column of B needs no extra delay, the
second column needs one delay, the third needs two
(attributed to the two cut-sets separating the third column
input and the adjacent top-row processor), etc. Therefore,
the B matrix will be skewed, as shown in Figure 3-1(b). A
similar arrangement can be applied to the input matrix A.

14

IEEE. ASSP MAGAZINE JULY 1985

3.2. Converting an SFG Array into a Wavefront Array

The wavefront: propagation is very similar to the pre-
vious case. Since in wavefront processing the (average)
‘time interval (T) between two.separate wavefronts is deter-
mined by the availability of the operands and operators, In
this case, there is a feedback loop involved, shown by the
edge-pairs (an up-going arrow and a down-going arrow) in

" Figure 3—1. For example, in the node (1,1) the second
front has to wait till the first front completes. all the foltlow-

o be be D

% 0s 0,0 0 00—}
Ve '044 033 ‘Ozz,q"‘ 0 O

. _ _ ,_’ ,,054 ’0’43, 032 ”‘021 : O)

- ' Ogs sy 042‘“'031

- and-matrix multiplication. Note that the additional modi-_

ff;from the top and travehng downwards _

f';inzatlon procedure to the Figure 3—2(a). As the pipelining.:
- rate is proportional to «~", and since « is now reduced to. !
-1, this systolic array can run twice faster than the a =2
‘,,desugn of Flgure 3—-1 (b] a i

o o

bzs _814"

be by bu

é’jFlgure 3—2 (aJ Another SFG Array for banded matrlx-ﬂ";

fication to Figure 3—1(a) is that the input B matrix is now'.
- loaded from the bottom and travels upwards, instead ofif

i."(bJ The systohc array as a result of applymg the systol-;l'

ing steps: (i) propagate data downwards (processing time:
A), (i) perform the arithmetic operations at node (2,1)
(processing:time: Twa), and (iii) return the result upwards
to PE(1,1) (processing time: ‘A). Once the result is re-
turned to PE(1,1), the second front can be immediately

‘activated. The activations of all the later fronts follow ex-

actly the same procedure; therefore, the (average) time
separating two consecutive fronts is T = Tya + 24,

In fact, every regular and modular SFG array can be
converted into a wavefront array. In a self-timed system,
the exact timing reference is ignored; instead, the central
issue is sequencing. Getting a data token in a self-timed
system is equivalent to incrementing the clock by one

| time-unit in a synchronous system. Therefore, the con-

version of an SFG into a data-driven system involves sub-
stituting the delay operators D by “handshaked delay”
registers. (A “handshaked delay” register is a device that

~prevents any incoming data from directly passing through

until the handshaking flag signals a “pass.” For example,
applying this conversion process to the SFG array in
Figure 2-3 for matrix multiplication yields the wavefront

| array shown in Figure 2-5 [9]. The conversion process is
equally applicable to the SFG array of Figure 3-1(a).

3.3 How to improve the pipelining rate?

In the above case, the maximum loop delay is 2. Thus,
the slow-down factor a equals 2 and the pipelining rate is
reduced by one half. Now the question is: What is the best
pipelining rate achievable for the algorithm? To improve
the rate, we would like to reduce the slow-down factor
downto a = 1. This is possible only when all the loops are
eliminated. For the banded-matrix-and-matrix multipli-
cation problem ‘one has to resort to a major modification
on the SFG array. The trick is to load the input B matrix
from the bottom and travel upwards, as illustrated in
Figure 3-2(a), instead of from the top and traveling down-
wards, as in Figure 3-1(a). Here it is a valid change,
because as long as broadcasting is assumed in the SFG
model, it does not matter whether the (same) data are
loaded top-down or bottom-up. But the effects ona, and
therefore the achievable pipelining rates, are totally differ-
ent. Note that in the modified SFG array there are no
loops. This implies that @ = 1. .Consequently, the cuts as
shown in Figure 3-2(a) do not call for any time rescaling,
but only need a delay transfer of D. After the cut-set delay
transfer procedure, the resultant systolic array is depicted
in Figure 3-2(b). Note that this new version offers a
throughput-rate of 1 word per unit-time for each channel,

~ which is twice faster than the prevnous systolic design.

34. 'SpiraI Systolic Arrays

There are many systolic arrays and algorithms that are
more complicated than the ones for the matrix multipli-
cation example discussed above. These include systolic
algorithms for convolution, ‘correlation, FIR, lIR, and lat-
tice filtering for one- or two-dimensional signals. Also
worth mentioning are a number of important matrix
operations, such as linear-system solution, least square

15

JULY 1885 IEEE ASSP MAGAZINE

solution, Toeplitz system solution, and eigenvalue and sin- .

gular value decomposmons

Due to limited space, it is impossible to cover all the
algorithms in this article. Instead, the author will focus
upon a.very interesting class of algorithms that can be
regarded as a generalization of the matrix multiplication
and LU decomposition problems. These algorithms share
a common recursive formulation:

Ch = Ck™ + Ci™ (Chcy* -
where +, -, and * derote certain algebraic operators

defined by the specific application. This formulation
covers a broad and useful application domain that in-

ray mvolves a careful bookkeeplng of recursion indices.
A mphcated mapplng is exemplified by the mathematica

| ‘shown in Eq. (4), which embraces: many im-
rtant apphcatlons To cope with the index change, it is
Mon practice to move the whole data-array north-
g the diagonal direction after each recur-
,l;he first row and first column PES wil

is stralghtforward to lncorporate plpe-i
he array ‘Note that (C&")* should be sent to.
'y PE; we chgosé to send it down along the first column -
r‘n"(Ck R 1] The result is then sent along

16

1EEE - ASSP -MAGAZINE JULY 1885

cludes transitive closure, shortest path, LU decomposi-

tion, and many other problems. As an example, for LU-

decomposition problem, the operation (Ckc")* is in-
version, i.e. (CK")™. ‘

A systolic array for thls class of algorlth ms is proposed in
Fig. 3-3. We call this configuration a spiral systolic array,

since this array configuration is basically an Illiac IV spiral

_configuration used in llliac IV, augmented by diagonal

connections [13].

4. ALGORITHM DESIGN CRITERIA

An effective design of algorithms for array processing
hinges upona full understanding of the problem specifica- :
tion, mathematical analysis, parallelism analysis, and the
practicality of mapping the algorithms onto real machines.

Parallel array algorithm design is a new area of research

study that has profited from the theory of signals and sys- -
“tems and has been influenced by linear algebraic numer-

ical methods. In a conventional algorithm analysis, the
complexity of an algorithm:depends on the computation:
and .storage required. The modern concurrent com-,

-putation criteria should include one more key factor:
. communication. In the design of array algorithms, the

major factors therefore are computatlon communication,

. and memory.

The key aspects of parallel algorithms under VLSI archi-

| - tectural constraints are presented below:

1. Maximum Concurrency: The algotithm should be
structured. to' achieve maximum concurrency
and/or maximum throughput. (Two algorithms
with equivalent performance in a sequential com-
puter may fare very differently in parallel process-
ing environments.) An algorithm will be favored if
it expresses a higher parallelism. that is exp]ontable
by the computing arrays. =
Example: A very good example is the problem of
solving Toeplitz systems, for which the major algo-
rithms proposed in the literature are the Schur al-
gorithm and the Levinson algorithm [12]. The latter
is by far more popular in many spectrim esti-
mation techniques, such as the maximum entropy
method [1] or maximum likelihood method [2]. In
terms of sequential processing, both the algo-
rithms require the same number of operations.
However, in terms. of the achievable concurrency
when' executed. in a linear array processor, the
Schur algorithm displays a clear-cut advantage over
the Levinson algorithm. More precisely, -using a
linear array of N processing elements, the Schur
algorithm will- need only O(N) computation time,
compared with. O(NlogN) required for the
Levinson algorithm. Here N represents the dimen-
sion of the Toeplitz matrix involved. For a detailed
discussion, see [12].

2. Maximum pipelinability and ‘the balancing of com-
putation and I/O: Most signal processing algorithms

Figure: 4—1: Arr‘ay Pr‘ocessor Architectures for (a] FFT Algorlthm'
al processing times, the ratio is log N vs. N in favor of FFT. On the other hand, the FFT array requires a global
fe t-Shuffle) communication network. [n contrast, the DFT array can be easily- systohzed and implemented in
rOCESSOr array With /ocal communication. Note that the weighting factors W** are tlme-varymg, and the
ier transform output {Xk} stays in the node and wm eventually be pumped out.

and (b) DFT Algorn:hm ‘Note that in terms of

demand very high throughput and are computation-
intensive compared with the input/output (/O) re-
quirement. Pipelining is essential to the throughput
of array processors. The exploitation of the pipeline
technique is often very natural in regular and locally-
connected networks; therefore, a major part of con-

currency in array processing will be derived from

pipelining. In general, the pipelining rate is deter-
mined by the “maximum” loop delay in the SFG array.
To maximize the rate, one must select the best
among all possible SFG arrays for any algorithin, The
pipeline techniques are especially suitable for bal-
ancing computation and 1/O because the data tend to
~engage as many processors as possible before they
leave the array. This helps reduce /O bandwidth for
outside communication. _)
Example: Note that, for the banded-matrix-and-matrix

“multiplication algorithm, the systolic array shown in
Figure 3-2(b) offers a throughput-rate twice as fast as
the design in Figure 3—1(b).

. Trade-off between communication and computation
costs: To make the interconnection netwotk prac-
tical, efficient and affordable; regular communica-

tion should be encouraged. Key issues affecting the
regularity include local vs. global, static vs. dynamic,
and data:independent vs. data-dependent ‘inter-
connection modujes. The c¢riterion should maximize
the tradeoff between interconnection ‘cost and
throughput. For example, to conform with the com-
munication constraints imposed by VLSI, a lot of em-
phasis has recently been placed on a special class of
local and recursive algorithms.

Example: A comparison between the costs of DFT an,,d
FFT algorithms will be discussed momentarily in
Example 1.

Numerical performance, quantization effects, and data
dependency: Numerical behavior depends on many
factors, such as the word-length of the computer and
the algorlthms used. Unpredictable data dependency
may severely jeopardize the processing efficiency of
a highly regular and structured array algorithm. Effec-
tive VLSI arrays are inherently highly pipelined, and
therefore require 'well structured algorithms with
predictable data movements. Iterative methods with
dynamic branching, which are dependent on data
produced in the middle of the process, are less suited

17

JULY 1885 IEEE ASSP MAGAZINE

for pipelined architecture. A comparisori between
several major linear system solvers will be discussed
in Example 2.

Example 1: Trade-off between computatlon and
communication costs

When the communication in VLSI sys‘te’ms is " empha-
sized, the trade-off between computation and commu-
‘nication becomes a central issue. (cf. Figure 4-1.) The
preference on regularity and locality will-have a major

impact in designing parallel and/or pipelined algorithms.

Comparing the two Fourier transforming techniques, DFT

-and FFT, the computations are O(N?) vs. O(NlogN) in favor

of FFT. However, the DFT enjoys-a simple and local com-
munication, while 'the FFT involves a global inter-
connection, i.e. the nodes retrieve their data from far
away elements. In the trade-off of computation vs. com-
munication costs, the choice is 'no longer obvious.

Exa_mp[e 2: Comparison of Linear System Solvers

It is well known that there are three major numerical’

algorithms for solving a linear system of equations; name-
ly, the LU decomposition, the Householder QR (HQR) and
the Givens QR (GQR) decomposition algorithms [19].
From a numerical performance point of view, a HQR or a
GQR decomposition is often preferred over an LU decom-
position for solving linear systems. As for the maximum
.concurrency achievable by array processing, the GQR al-
gorithm achieves the same 2-D concurrency as ‘the LU
decomposition with the same complexity in a modular,
streamlined fashion. They both hold a decisive advantage
over the HQR method in terms of maximum concurrency

achievable. Therefore, the Givens QR method is superior

to the LU decomposition and the Householder QR
method when both numerical performance and massive
parallelism are considered. Note that the price, how-
ever, is that the GQR method is computationally more
costly than the other two methods, (cf. the third column
of Table 1.)

TABLE 1.
issues are data dependency,

numerical performance of LU decomposition may be im-
proved by using a pivoting scheme [18]; but this necessitates
control on the magnitude of a pivot, jeopardlzmg the other-
wise smooth data flow in the array).

Comparison of linear system solvers. The key -
numerical performance, maxi- -
mum:concurrency, and tota number of computations. (*The

e o) Maximum |
Numerical. Concurrency Number of
Performance Achlevable Operations |
| Bad* 2-Darray LINY/3)
Good i 1-D »ar‘ray : @2N?/3)
.| Good. 12-D array B i'(4N_3/‘3) ,

INTE RFACE

anure . _An example of’ Array Proceesmg System
‘*Gonﬂguratlon' ‘An array processor is often used as an

,ast Camputer The hoet computer should prowde batch ;
_data storage, management, and formatting; determine,
' le program that controls the interface system-
network and generate and load object :

: deStgner is ta ldentqu a suitable host meohlne for inter--
“facing with high-speed array processor units. :
flnterfacje System' The mterface system, connected to

"system deSIgoer are managmg blocks .of data and makmg]
| sure the memory [buffer] unit |s eble to balance the low

£ prOcessors. o :
“Connection ,\Network Connectlon networke provide a set

| Processor Arrays For snmphclty. only one processor
i-'array is physically depicted in the figure.. However, the
: ept of networking several processor arrays has now
‘attracted a good deal of attention. For example, when a
P reducible to several subproblems that can be

xecuted one after the other, it will be useful to have each
ubproblem executed in its own processor array, whilg'
 utilizing the network to facilitate the data pipelining be-
- tween the arrays. This suggests a pipelining scheme at
“the array—level ‘which may increase the’ processmg speed-
,up'by one more order of magnltude

18

IEEE. ASSP MAGAZINE JULY 1985

5. IMPLEMENTATION CONSIDERATIONS OF ARRAY
PROCESSOR SYSTEMS . -
5.1. Design of Array Processor Systems

The major components of an array processor system are:
1) the host computer 2) the interface system,

including buffer memory and control unit. 3) the connec-
tion networks - (for PE-to-PE and PE-to-memory corinec-

tions) 4) the processor array, comprising a number of -

“ processor elements with focal memory.

A possible overall system configuration is depicted in
Figure 5-1, where the design considerations for the four
major components' are further elaborated. In general, in
an overall array processing system, one seeks to maximize
the following performance indicators: computing power

using multiple devices; communication support, to |

enhance the performance; flexibility, to cope with the
partitioning problems;. reliability, to cope with the fauit-

tolerance problem; and practicality and cost-effectiveness.

5.2. DSP-Oriented Array Processor Chips

The implementation of VLSI chips and the structure of
array, computing systems depend largely on the estab-
lished switching technologies. Another important design

consideration is the appropriate level of granularity of
" the processor elements (PE's) composmg ‘the array, (cf

Figure 5-2[al}.

For some low-precision digital and image processing
applications, it is advisable to consider very simple pro-
cessing primitives. A good example of a commercial VLSI
chip is NCR’s Geometric' Arithmetic Parallel Processor, or

GAPP, which is composed of a 6-by-12 arrangement of
_single bit processor cells. Each of the 72 processor cells in
the NCR45CG72 device contains an ALU, 128 bits of RAM,
and bi-directional communication. lines connected to its
four nearest neighbors: one each to the North, East,
South, and West [4]. Each instruction is-broadcast toall the
PE’s, causing the array to perform like a SIMD (single-
instruction-multiple-data) machine. The GAPP.array,
however, is mostly programmed in a low-level (macro-
assembly-level) language, posing some programming dif-
ficulties for general users.

Many DSP applications require the PE’s to include more
complex primitives, such as multiply-and-add- modules.’

An example of a commercial chip with a larger granularity
is INMOS’ Transputer [21]. Transputer is an Occam-
language based design, which provides hardware support
for both, concurrency and communication—the heatt

of array computing. It has a 32-bit processor capable of -

10 MIPS, 4 Kbytes of 50 ns static RAM, and a variety of
communications. interfaces. It adopts the now popular

RISC (reduced-instruction-set-computer) architecture de- -

sign. The INMOS links, with builtsin handshaking circuits,
are the hardware representation of the channels for com-
munications. Furthermore, its programming language,
Occam, is very suitable for programming wavefront-type

array processing. Therefore, the transputer can be readily:

LOGIC-ENHANCED MEMORIES
COMPUTATIONAL ARRAYS |

NUMBER OF NODES
(=}
I
&

< N ‘
N ® " MICROCOMPUTER
N NCTTTTTUARRAYS
103 N SO CONVENTIONAL
: N N/ COMPUTERS |
\ N . Lo
N N \\ .
—T S T R
10° 08 10"

L UNODE! COMPLEXITY

:?Flgur‘e 5—2 szferent Ievels of granulamty of the pro—.
cessor element (PE] in array systems, adapted from [181. |
-An example of smaller PE granularity is NCR's GAPP. The
.GAPP array lies in the intersection domain between the -
“logic-enhanced- -memory group and the computational |
array group shown in the figure. Such kinds of simple
- processor primitives.are often preferred in low-precision:
image processing applications. An example of a larger PE
- granularity is INMOS' Transputer. Many DSP applications
-require fast multiply/accumulate, high-speed RAM, fast
“coefficient table addressmg. a possible choice’ appears to
| be an enhanced version of the transputer discussed in the -
.text, In the figure, a transputer array belongs largely to
“the micro-computer array domain. Because of built-in |
; asynchronous communication hardware; transputers are -
. very suntable for the implementation of wavefront arrays :

adapted for the construction of (asynchronous) wave-
front arrays.

Other examples of commeraally available VLSI chips
worthy of consideration for array processor implementa-
tions are NEC’s data flow chip upd7281 [3], Tl's program-
mable -DSP chip TMS320, and recent 32-bit processors
such as AMD 29325, Motolora 68020, and Weitek's 32-bit
{or the new 64-bit) floating-point chips [20]. ‘Many DSP

‘applications require very special features such as fast

multiply/accumulate, high-speed- RAM, fast coefficient
table addressing, and others. Therefore, the development
of a series of customized special-purpose; chips for DSP
array processors should be given a high priority by the

“VLS! and DSP research community.

'5.3. Comparisons between Systolic and Wavefront Arrays

The main difference between the two array processing
schemes is that the wavefront arrays operate asynchro-
nously (at the price of handshaking hardware), while the
systolic arrays pulse globally in synchromzatlon with a
global clock.

The systolic array features the very important advan-
tages of modularity, regularity, local interconnection,
highly pipelined multiprocessing, and continuous flow of
data between the PE’s. It has a good number of DSP appli-

19

JULY 1985 .IEEE ASSP MAGAZINE

cations. However, the wavefront design offers some addl-
tional useful advantages:

Maximum Pipelining: A majdr thrust of the wavefront:
array derives from its maximizing the pipelinability by ex-
ploring the data-driven nature inherent in many parallel -

algorithms. This becomes especially useful in the case of
uncertain processing times used in individual PE’s. As re-
ported in [16], wavefront pipelining may yield a significant
speed-up, compared with pure systolic pipelining. (In the
special simulation example used: in [16], the improvement
is a factor of almost two.)

Architectural Extendibility: The wavefront array also

highlights the extendibility of the array size, since'it can.

get around the global synchronization requirements.
Whereas the asynchronous model in the wavefront arrays
incurs a fixed time delay.overhead due to the handshaking

processes, the synchronization time delay in the systolic’

arrays is primarily due to the clock skew which changes
dramatically with the size of the array. This latter phenome-
non will be a potential barrier in the design of ultra-large-
scale synchronous computing systems.

Programming Simplicity: The notion of computational
wavefront also facilitates the programmability of array pro-
cessors. By tracing the wavefronts, the description of the

space-time activities in the array may be significantly

- simplified. The previously mentioned parallel processing
language, Occam, is very suitable for programmmg wave-
front arrays.

Fault-Tolerance of Array Processors: To enhance the re-
liability of computing systems, real-time signal processing
architectures demand a special attention in run-time fault
tolerance. However, 2-D systolic arrays are in general not
feasible for run-time fault tolerance design, since it re-
quires a global stoppage of PE's when any failure occurs,

-1t is known that certain fault tolerance issues (roll-back,
suspension of execution, etc.) are simpler to handle in
data-flow architecture than in other multi-processors [5].
Since wavefront arrays incorporate the data-driven feature
into the arrays, they pose similar advantages in-dealing
with time uncertainties in the fault tolerance environment.

. For example, once a fault is detected, further propagation
of the wavefront will be automatically suspended, accord-
ing to the wavefront principle. More specifically, due to its
asynchronous nature, one only needs to stop the faulty PE,
and all subsequent PE’s will automatically stop as a ripple.
Systolic arrays, by comparison, would probably require
a global “error-halt” signal to be broadcast, and the
corresponding roll-back problem would be far more
cumbersome. '

In summary, a systolic array is useful when the. PE’s are
simple ‘primitive modules, since the handshaking hard-

“ware in awavefront array would represent a non-negligible
overhead for such applications. On the other hand, a
wavefront array is more favored when the PE’s involve
more complex modules (such as multiply-and-add and lat-

tice or rotation operations), or when a robust and reliable

computing environment (such as fault-tolerance) is
~ essential.

20

IEEE ASSP M‘AGAZINE JULY 1985

6. APPLICATION TO ADAPTIVE NOISE CANCELLATION

" -From the applicational system perspective, an illustra-
tive problem is the upgrading of modern passive sonar
systems by introducing high-speed array processors for
front-end signal processing and spectrum estimation com-
putations. The new systems are expected to possess real-
time- and high-performance-processing capabilities. This
article will use the specific signal processing example of
adaptive noise cancellation. More specifically, the author .
will discuss the McWhirter’s algorithm based on Ieast
square minimization using QR decomposition [15]..

Given any N X p matrix X with N.> p and an N-element
vector y, find the p-element vector of weights w which
minimizes |e|, where

» e=Xw+ty
and ||{| denotes the usual Euclidean norm. The problem
may be solved by the method of orthogonal trian-

gularization (QR decomposition), which is numerrcally
well-conditioned and described below. An orthogonal

- matrix Q is generated such that

ax=[2] wa ay-[4]

where R is a p X p upper trianglular matrix and u is a
p-element vector. It follows. that the least squares weight
vector w must: satisfy the equation

Rw+u=0

which may readily be solved by back-substitution.

~“The processor of recursive least-squares minimization
may be carried out using a triangular wavefront processor;
based on pipelining-a sequence of Givens. rotations,
resulting in.an elementary orthogonal transformatlon of

the form:
.O,ri'.'..rk,...] B [0...0‘,ri’.;.r.’<...]
.O,Xi..’.Xk... '0"'0’0"'X{('7'

[c s] [0..
=g ¢cil0..
4)

The elements c and s may be regarded as the cosine and

sine, respectively, of a rotation angle that is chosen to

eliminate the leading element of the lower vector. This is
illustrated in Figure 61 for the case.p = 4, (cf. [16]).
The Givens rotation method is recursive in the sense-
that the data from the matrix X is introduced.row. by .row,
and as soon as each.row x; has been absorbed into the
computation, the resultmg trlangular matrix R(n) repre-
sents an exact QR decomposition for all data processed up

to that stage.

The boundary cell in each row (mdrcated by a large
circle in- Figure 6-1) computes the rotation parameters c
and s appropriate to the internally stored components and
the vertlcally propagating data vector. These rotation
parameters are then passed horizontally to the right. The
internal cells (indicated by squares) are subsequently used

to apply the same transformation to all other‘elements.of

the received data vector. Note that when the trlangular

As each row x;, of the matrix X moves down through the
array, it interacts with the previously stored triangular ma-
trix R(n,— 1) and is eliminated by the sequence of Givens
* rotations. 'As each element y, moves down through the
right hand column of processors, it undergoes the same
“sequence of Givens rotations, interacting with the pre--
viously stored vector u(n — 1) and generating the updated
vector u(n) in the process. It follows that the exact least-
squares solution could be derived at every stage of the
process by solving the corresponding triangular linear sys-
tem for w(n) [7]. ‘
In many least-squares applications, the primary objec-
tive is to compute the sequence of residuals

en = Xfiw(n) + yn

- while the associated weight vectors w(n) are not of direct

- interest. It has recently been shown [15] how the residual

en at each stage of the computation may be generated

~ quite simply by using the array in Figure 6-1, eliminating

the need to solve the associated triangular linear system

for w(n). The: parameter Xou ‘produced by the bottom

processor in"the right hand column. of cells is simply

- multiplied by the parameter you that emerges from the

final boundary processor. This produces the residual di-
rectly [16l.

%,{'.SU.MMA;R%

- We have witnessed the rapid growth of signal process-
ing-and computing technology that followed the inven-
tions of the transistor in the 1940’s and integrated circuits
in the late 1950's. The emergence of new VLSI technology,
along with'modern engineering workstations, CAD tools,
and other hardware and software advances in computer
technology, virtually assure a revolutionary information
processing era in the near future. The signal processing
community will very soon face a prevallmg impact of mod-
ern VLSI technologies regarding future integration of
,computers communications, control, command, intel-
- ligence and information.
VLSI technology, starting as a device research area, pro- -
'vides opportunities and constraints that will open up new:
; areas of research in computer architecture. From a scien-
array illustrated in Figure 6-1 is operated in the wavefront tific research perspective, a close interaction between
processor mode, the operation of PE is no longer con-. yisj and array architecture research areas will be essen-
trolled by a globally distributed clock signal. Instead, each tja|, This paper has identified several novel architectures
PE receives its input data from the specified ‘directions, that maximize the strengt\h of VLSI in terms of intensive
performs the specified functions, and delivers the appro- ;nd pipelined computing, and yet circumvent its main
priate output values to neighboring PE's. The operation of |imitations in reliability and communication. In the au-
each cell is controlled locally and depends on the neces- thors opinion, research and development in the array pro-
sary input being available, and on its previous outputs. cessors will not only benefit from the revolutionary VLS|
having been accepted by the appropriate nearest neigh- ~ technology; it will also play a central role in shaping the
bors. As a result, it is not necessary to impose a temporal * course of algorithmic, architectural, and applicational

skew on the input.data matrix. For example, let us con- . rends of future supercomputer technology.
sider the top: processor in the right hand column of the _

figure. In the wavefront case, this will not operate on its o _

first input data sample y until the required rotation pa- REFERENCES

rameters ¢ and s are available from the neighboring pro- [1] Burg, }.P. Maximum Entropy Spectral Analysis. PhD
cessor on the left. thesis, Stanford University, 1975.

RESIDUAL]

_Figure B-1: Wavefront array for recursive leas
squares m|n|m|zat|on, adapted from [1B1. As a leas
‘square solver array; each of the non- dragonal PE
‘}:performs a basic Givens rotation as shown in (4). No
'| that the diagonal (circle) PE’s are responsible for gene
~ating the rotation angle parameters ¢ and s. The param
ters are then propagated rightwards to all the PE's alo
fthe same row to be used for the rotatron operatrons

JULY 1985 IEEE ASSP MAGAZINE 21

[2] Capon, }.(1969). “High-Resolution Frequency-

. Wavenumber Spectrum Analysis,” Proc. IEEE, 57,

1408-1418.

[3] Chase, M. (1984). “A Pipelined Data Flow Architecture
for Digital Signal Processing the NEC uPD7281,” IEEE
" Workshop on VLSI Signal Processmg, Los Angeles,
Nov. 1984, ,

[4] Davis, R.H., and Thomas, D. (1984) “Systolic array
chip ‘mat,ches the pace of. high-speed processing,”
Electronic design, Vol.: 207-218, October, 1984. ‘

[5] Dennis, J.B. (1980). “Data Flow Supercomputers,”
IEEE Computer, Nov, 1980, 48-56.

[6] Fisher, A.L., and Kung, H.T. (1985). “Special-purpose
VLSI Architectures: General Discussions and a Case
Study,” In VLSI and Modern Signal Proc‘essihg, Kung,
S.Y., Whitehouse, H.)., and Kallath T. K. (eds.)
Prentlce Hall, Inc.

[7] Gentleman, W.M;, and Kung, H.T. (1981). “Matrix
Triangularization by Systolic Array,” SPIE Proc. Real-
Time Signal Processing IV 298.

[8] Hayes,].P. (1978). Computer Archltecture and Or-
ganization. McGraw Hill, N.Y.

[9] Kung, S.Y.,(1984). “On Supercomputing with
Systolic/Wavefront Array Processors,” Proceedmgs of
the IEEE, Vol. 72(7).

[10] Kung, H.T., and Leiserson, C. E. (1978). “Systolic Ar-
rays (for VLSI),” Sparse Matrix Symposrum SIAM,
256-282.

[11] Kung, S.Y., Arun K.S., Gal-Ezer, R.]., and Bhaskar
Rao, D, V. (1982). ”Wavefront Array Processor: Lan-
guage, Architecture, and Applications,” /EEE Trans-

actions on Computers, Special Issue on Parallel and

Distributed Computers C-31(11): 1054-1066. v

[12] Kung, S.Y., and Hu, Y.H. (1983). “A Highly Concur—
rent Algorlthm and Pipelined Architecture for Solving
Toeplitz Systems,” IEEE Transactions on ASSP, ASSP-
31(No. 1) 66-76. o ‘

[13]'Kung, S.Y.,.and Lo, S.C. (1985). “A Spiral Systolic
Archltecture/AIgorlthm for Transitive Closure Prob-
lems,” Submitted to [EEE Trans. on Computers, Spe-
cial Issue on Distributed Computing,. Vol. C-34(12).

[14] Mason, S. . (1953). “Feedback . Theory— Some Prop-

erties of Signal Flow Graphs,” Proceedings, IRE, 41:

920--926.
(15] McWhirter, J. G. (1983). “Recursive Ieast-squares

minimization using a systolic array,” Real Time Signal
Processing VI, 105.
[16] Broomhead, D.S., et al. (1984). “A Practical Compari-
~son of the Systolic and Wavefront Array Processing
Architectures,” Proceedings, |EEE Workshop on VLSI
Signal Processing, Los Angeles, November, 1984.
(171 Mead, C., and Conway, L. (1980). Introductlon to VLS
Systems, Addlson-WesIey

_[18] Seitz, C. (1984). “Concurrent VLS| Archltectures,”

IEEFE Transactions on Computer, C-33.

- [19] Stewart, G.W. (1973). Introduction to Matrix. Com-

putations, Academic Press. _
[20] Ware, F., etal. (1984). “Fast 64-bit chip set gangs up for
" double-precision floating-point work ” Electronics,
99-103, July, 1984.
[21] Wilson, P., (1984). “Thirty-two bit micro supports
multiprocessing,” Computer Desrgn 143-150. June,
1984. :

Sun-Yuan Kung received his B.S. Degree in Electrical Engmeenng in
1971 from the National Taiwan University, Taipei, Taiwan; M.S: De-
gree in Electrical Engineering in 1974 from the University of Roch-
ester, in Rochester, New York and Ph.D. Degree in Electrical Engi-
neering in 1977 from the Stanford University, Stanford,:California,

In 1974, he joined the Amdahl| Corporation, Sunnyvale, as an Associ-
ate Engineer in LS| design and simulation. From 1974 to 1977, he was
a Researph Assistant of Information’ Systems Laboratoties, Stanford
University. Since july 1977, he. has ‘joined the faculty of Electrical
Engineering-Systems in the University of Southern California, Los

- Angeles, California, wheteé he is presently an Associate Professor. In

1984, he was a Visiting Professor at the Stanford University; and later
in the same year a Visiting Professor at the Delft Umversnty of Tech-
nology, The Netherlands.

Dr. Kung’s research interests are in the areas of approximation theory
in linear- systems, ‘digital signal processing, modern and high-
resolution spectrum analysis, paraHel array processors and VLS| su-
percomputing for signal processing. Since 1981, he has been in

- charge of the ONR Selected Research Project (SRO-If) on the devel-

opment of massively parallel signal processors. He served as the
General Chairman of the USC Workshop on VLSI Signal Processing,

‘Los Angeles, November 1982. He was a U.S. delegate to the US-Japan -

Joint Seminar on Mathematical Systems Theory, Gainesville, Florida,
April 1983; and was an editor of an advanced research book on VLS|
and Modern Signal Processing,” Prentice-Hall, Inc., August, 1984. He
currently serves on the 1EEE ASSP Technical Committee on VLS] and
is the Associate Editor for the VLS! area in the 1EEE Transactions on

_ Acoustics, Speech and Signal Processing.
Dr. Kung is'a. Member of ACM and a Senior Member of IEEE.

22

IEEE. ASSP MAGAZtNE, JULY 1985

