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quirements in VLSI design. 
*This  research was supported in part by the National  Science  Founda- scaling effects 
tion under Grant ECS-82-13358, and by the Army Research Office 
under  Grant DAAG29-79-C-0054, in the scaling of geometry, we  often assume that all the 
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Array  Processors  and  Algorithm  Expressions 
A fundamental issue in mapping  algorithms  onto an 

array is to express parallel  algorithms  in a notation  than can 
be easily understood and compiled into  efficient VLSl array 
processors. Thus a powerful expression of array algo- 
rithms will be essential to  the design of arrays.  This  paper 
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“beats.” In order to synchronize the activites in a systolic 
array, extra delays  are often used to,ensure correct timing. 
More critically, the  burden  of having to synchronize the 
entire  computing  network  will eventually becpme intoler- 
able for very-large-scale or ultra-large-scale arrays. 

2.3. Wavefront Array 

A simple solution to the  above-mentioned problems is 
to take advantage of the  control-flow locality, in addition, 
to the data-flow locality, inherently possessed by most 
algorithms of  interest., This permits a data-driven, self- 
timed approach to array processing. Conceptually, this 
approach substitutes the  iequirement of correct “timing” 
by correct “sequencing.” This concept is used extensively 
in dataflow computers and wavefront arrays. 
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This situation arises in many application domains, such with  only a . P  X Q rectangular array (as opposed to an 
as DFT and time-varying  (multi-channel)  linear  filtering.  In ' N X N array).  This is  shown in Figure 3-l(a). 
most applications, N >> P and N >> Q; therefore, it is 
very uneconomical to use N x N arrays for computing A ~ ~ ~ ~ ~ i ~ a f i o n ~ x a m p l e  
C = A  x B. If local  interconnection is preferred,  the  proposed  pro- 

Fortunately, with a slight  modification  to  the SFG in Fig- cedure can then  be used to systolize the SFC array in Fig- 
ure 2-3, the same speed-up  performance can be achieved ure  3-l(a) and yield  the data  array as depicted  in Figure 



3-l(b). The systolization  procedure is detailed  below: systolic  array has to bear a slow-down factor (Y = 2. The 
(i) Time-scaling; According to' Rule (i) above, the slow- pipelining rate is 0.5 word per unit-time  for each channel. 

down  factor (Y is determined  by  the maximum loop delay (ii) Delay  Transfer: Apply 'Rule (ii) above to the cut-sets 
in the SFG array. Referring to Figure 3-l(a), any loop con- shown in Figure 3-l(a). The systolized SFG will have one 
sisting of one  up-going and one down-going edges yields delay  assigned to each  edge  and thus represents a local- 
a (maximum) delay of two. This is why the  final  pipelined ized  network. Also  based on Rule (ii), the  inputs  from 

12 IEEE ASSP  MAGAZINE JULY 1985 





different  columns of B and rows of A will have to be ad- 
justed by a certain number  of delays before  arriving at the 
array. By counting  the cut-sets involved in Figure 3-l(a), it 
is clear that  the  first colum'n of B needs no extra delay, the 
second column needs one delay, the  third needs two 
(attributed to the two cut-sets separating the  third column 
input and the adjacent top-row processor), etc. Therefore, 
the B matrix will  be skewed, as shown in .Figure 3-l(b). A 
similar arrangement can be applied to the  input matrix A. 
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3.2. Converting an SFC Array into  a Wavefront  Array 
The wavefront  propagation is very similar to the pre- 

vious case. Since in wavefront processing the (average) 
time  interval (T) between two separate wavefronts is deter- 
mined by the availability of  the operands and operators. In 
this case, there is a feedback loop involved, shown by the 
edge-pairs (an up-going  arrow and a  down-going arrow) in 
Figure 3-1, For example, in  the node (1 , 1) the second 
front has to wait till  the first front completes all the  foltow- 





solution, Toeplitz system solution, and eigenvalue and sin- 
gular value decompositions. 

Due to  limited space, it is impossible to cover all  the 
algorithms in this article, Instead, the  author will focus 
upon  a very interesting class of,algorithms that can be 
regarded as a generalization of the matrix ,multiplication 
and LU decomposition  problems. 'These algorithms share 
a common recursive formulation: 

Ck = cp-1 + CFL? . ((-$;I)* . ck;' ; 
'I I 

cludes transitive closure, shortest path, LU decomposi- 
tion, and many other problems. As an example, for LU- 
decomposition  problem,  the  operation (Ck').* is in- 
version, i.e. (C$F')-'. 

A systolic array for this class of algorithms is proposed in 
Fig. 3-3. We call this configuration  a spiral systolic array, 
since this array configuration is basically an llliac IV spiral 
configuration used in llliac IV, augmented by diagonal 
connections [131. 

where +, e, and * denote certain algebraic operators 
defined  by  the  specific  application. This formulation 4. ALGORITHM DESIGN CRITERIA 
covers a  broad and useful  application  domain  that in- An effective design of algorithms for array processing 

hinges upon  a  full understanding of the  problem specifica- 
tion, mathematical analysis, parallelism analysis,  and the 1 practicality of  mapping  the algorithms onto real  machines. 

Parallel  array algorithm design is a  new area of, research 
study that has profited  from the  theory of signals and sys- 
tems and has been influenced  by linear algebraic numer- 
ical methods. In a  conventional  algorithm analysis, the 
complexity of an algorithm depends on the  computation 
and storage required. The modern  concurrent  com- 
putation  criteria  should  include  one  more key factor: 
communication. In the design of array algorithms, the 
major factors therefore are computation, communication, 
and memory. 

The  key  aspects of parallel algorithms under VLSl archi- 
tectural constraints are presented below: 

1. Maximum  Concurrency:  The algorithm  should be 
structured  to achieve  maximum  concurrency 
and/or  maximum  throughput. (Two algorithms 
with equivalent performance in a sequential com- 
puter may fare very differently in parallel process- 
ing environments.) An algorithm will be favored if 
it expresses a  higher parallelism that is exploitable 
by.the  computing arrays. 
Example: A very good example is  the problem of 
solving Toeplitz systems, for  which  the major algo- 
rithms  proposed in the  literature are the Schur al- 
gorithm and the .Levinson algorithm [12]. The latter 
is by far more  popular in many spectrum esti- 
mation techniques, such as the maximum entropy 
method [I] or maximum 1ikelihoo.d method [21. In 
terms  of  sequential processing, both  the algo- 
rithms  require  the same number  of operations. 
However, in terms of  the achievable concurrency 
when executed i n  a linear array processor, the 
Schur algorithm displays a clear-cut advantage over 
the Levinson algorithm. More precisely, using a 
linear array of N processing elements, the Schur 
algorithm will need only O(N) computation time, 
compared  with O(NlogN) required  for   the 
Lev,inson algorithm. Here N represents the  dimen- 
sion of  the Toeplitz matrix involved. For a detailed 
discussion, see [121. 

2. Maximum pipelinability and the balancing of com- 
putation and I/O: Most signal processing algorithms 



3. 

demand very high  throughput and are computation- 
intensive compared with  the  input/output (110) re- 
quirement.  Pipelining is essential to  the  throughput 
of array processors. The exploitation  of  the  pipeline 
technique is often very natural in regular and locally- 
connected  networks; therefore, a major part  of  c9n- 
currency in array processing will be derived  from 
pipelining. In general, the  pipelining rate is deter- 
mined by the “maximum” loop delay in the SFG array. 
To maximize the rate, one  must select the best 
among all possible SFG arrays for any algorithm. The 
pipeline  techniques are especially suitable for bal- 
ancing computation and I/O because the ddta tend to 
engage as many processors as possible before they 
leave the array.  This helps reduce I/O bandwidth for 
outside  communication. 
Example: Note,that, for the banded-matrix-and-matrix 
multiplication algorithm, the systolic array shown in 
Figure 3-2(b) offers a throughput-rate  twice as fast as 
the design in Figure 3-l(b). 

Trade-off  between .communication and computation 
costs:  To make the  interconnection  network prac- 
tical, efficient and affordable, regular communica- 

tion should  be encouraged, Key  issues affecting the 
regularity include local vs. global, static vs. dynamic, 
and data-independent vs. data-dependent  inter- 
connection moduJes. The criterion  should maximize 
the  tradeoff  between  interconnection cost  and 
throughput. For example, to conform  with the com- 
munication constraints imposed by VLSI, a lot  of em- 
phasis has recently been placed on a special class of 
local and recursive algorithms. 
Example: A comparison between the costs of DFT and 
FFT algorithms will be discussed momentarily in 
Example I .  

4. Numerical performance, quantization effects,  and  data 
dependency: Numerical behavior depends on many 
factors,  such as the  word-length  of  the  computer and 
the algorithms used. Unpredictable data dependency 
may severely jeopardize  the processing efficiency of 
a  highly regular and structured array algorithm. Effec- 
tive VLSI arrays  are inherently  highly  pipelined, and 
therefore  require  well  structured  algorithms  with 
predictable data movements. Iterative methods with 
dynamic branching, which are dependent on data 
produced  in  the  middle  of the process,  are less suited 
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for  pipelined architecture. A comparison between 
several major linear system  solvers will be discussed 
in Example 2. 

Example 7 :  Trade-off between computation and 
communication costs 

When  the  communication in VLSl systems is empha- 
sized, the  trade-off  between  computation and commu- 
nication becomes a  central issue. (cf. Figure 4-1.) The 
preference on regularity and, locality will have a major 
impact in designibg parallel 'and/or pipelined algorithms. 
Comparing the two Fourier transforming techniques, DFT 
and FFT, the  computations are O(Nz) vs. O(NlogN) in favor 
of FFT. However, the DFT enjoys a simple and local com- 
munication,  while  the FFT involves a global  inter. 
connection, i.e. the nodes retrieve their data from, far 
away elements. In the trade-off of  computation vs. com- 
munication costs, the  choice is no longer obvious. 

Example 2: Comparison of Linear  System  Solvers 

It is well  known  that  there are three major numerical 
algorithms for solving  a linear system of equations; name- 
ly, the LU decomposition,  the Householder QR (HQR) and 
the Givens QR  (GQR) decomposition  algorithms 1191. 
From'a numerical  performance point  of view, a HQR or a 
GQR decomposition is often  preferred over an LU decom- 
position  for  solving linear systems. As for  the maximum 
concurrency achievable by array  processing, the GQR al- 
gorithm achieves the same 2-D concurrency as the LU 
decomposition with  the same complexity in a modular, 
streamlined fashion. They both  hold a decisive advantage 
over the HQR method  in terms of maximum concurrency 
achievable. Therefore, the Givens QR method is superior 
to  the LU decomposition  and  the  Householder QR 
method  when both numerical performance and massive 
parallelism are considered. Note that the price', how- 
ever, is that  the GQR method is computationally  more 
costly than the  other two methods, (cf. the third column 
of Table 1 .) 

TABLE 1: Com arison of linear system solvers. The  key 
issues are data 8 ependenc  numerical  performance,  maxl- 
mum concurrency, and totajl'number  of  computations.  [*The 
numerical performance of LU decomposition may  be  im- 
proved by using a pivoting scheme  t191;~but this necessitates 
control on the magnitude  of a pivot, jeopardizing the other- 
wise  smooth data flow in the array]. 
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5. IMPLEMENTATION  CONSIDERATIONS OF ARRAY 
PROCESSOR SYSTEMS 

5.1. Design of Array Processor  Systems 

The major components of an array processor sysiem  are: 

1) the   hos t   compu te r   2 )   t he   i n te r face   sys tem,  
including  buffer  memory and control  unit 3) the connec- 
tion  networks  (for PE-to-PE and PE-to-memory corinec- 
tions) 4) the  processor array, comprising  a  number  of 
processor elements with local memory. 

A possible overall system configuration is depicted in 
Figure 5-1, where  the design considerations for  the  four 
major components’are  further elaborated. In general, in 
an overall array processing system, one seeks to maximize 
the following performance indicators: computing  power 
using  multiple devices; communication  support,  to 
enhance the performance; flexibility, to cope with the 
partitioning  problems; reliability, to cope with the  fault- 
tolerance problem; and practicalityand cost-,effectiveness. 

5.2. DSP-Oriented  Array  Processor Chips 
The implementation  of VLSl chips and the  structure  of 

array computing systems depend largely on the estab- 
lished switching technologies.. Another  important design 
consideration is the appropriate level of granularity of 
the processor elements (PE’s) composing  the array, (cf. 
Figure  5-2[al). . .  

For some low-precision  digital. and image processing 
applications, it is advisable to consider very simple pro- 
cessing primitives.  A  good example of  a commercial VLSI 
chip is NCR’s Geometric  Arithmetic Parallel  Processor, or 
GAPP, which is composed of  a  6-by-I2 arrangement of 

, single bit processor cells. Each of  the 72 processor cells in 
the NCR45CG72 device contains an  ALU,  128 bits of RAM, 
and bi-directional  communication lines connected to i ts  
four nearest neighbors:  one each to the  North, East, 
South, and West [41. Each instruction is broadcast to all the 
PE’s, cau~sing the array to perform  like  a SlMD (single- 
instruction-multiple-data)  machine. The CAPP array, 
however, is mostly programmed in a  low-level (macro- 
assembly-level) language, posing some programming dif- 
ficulties for general users. 

Many DS,P applications require  the PE’s to include  more 
complex primitives, such as multiply-and-add modules. 
An example of  a commercial chip  with a larger granularity 
is  INMOS’  Transputer [21]. Transputer is an Occam- 
language  based  design, which provides hardware support 
for  both, concurrency and communication-the heart 
of array computing. It has a 32-bit processor capable of 
10 MIPS, 4 Kbytes of 50 ns static RAM, and a variety of 
communications interfaces. It adopts the  now  popular 
RlSC (reduced-instruction-set-computer) architecture de- 
sign.  The INMOS links, with  built-in handshaking circuits, 
are the hardware representation of  the channels for com- 
munications.  Furthermore, its programming language, 
Occam, is very suitable for programming wavefront-type 
array processing. Therefore, the transputer can  be readily 

adapted for  the  construction of lasynchronous) wave- 
front arrays. 

Other examples of commercially available VLSl chips 
worthy  of  consideration  for array processor implementa- 
tions are NEC’s data flow  chip ppd7281 [31, TI’S program- 
mable DSP chip TMS320, and recent 32-bit processors 
such as AMD 29325, Motolora 68020, and Weitek‘s 32-bit 
(or the new @-bit)  floating-point chips [201. Many DSP 
applications require very special features such as fast 
multiply/accumulate,  high-speed RAM, fast coefficient 
table addressing, and others. Therefore, the development 
of a series of customized special-purpose,chips for DSP 
array  processors should be given a high  priority by’the 
VLSl and DSP research community. 

5.3. Comparisons  between  Systolic  and  Wavefront  Arrays 

The main difference between the two array processing 
schemes is that the  wavefront arrays operate asynchro- 
nously (at the  price  of handshaking hardware), while the 
systolic  arrays pulse globally in synchronization with a 
global clock. . 

The systolic array features the very important advan- 
tages of  modularity, regularity, local  interconnection, 
highly  pipelined multiprocessing, and continuous flow of 
data between the PE’s. It has a good  number of DSP appli- 
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