Mar. 8

\[V = A + Bw_b + Cw_c + Dw_a \]

\[W = A - jBw_b - Cw_c + jDw_a \]

\[X = A - Bw_b + Cw_c - Dw_a \]

\[Y = A + jBw_b - Cw_c - jDw_a \]

Normally:

DIT: bit-reversal before butterfly

DIF: "after" butterfly
Higher Radixes than 2,4

- 2, 4 most popular
- Radix 4 is ≈ 20% more efficient than radix 2

I. Common-Factor FFTs

- "Can log-Tilney" FFTs
- Factors of N used in decomposition have common factors

A) Radix-r

- \(N = r^k \), \(k \) positive integer
- \(r \) is base
- \(\frac{N}{r} \) butterflies per stage
- \(k = \log_r N \) stages

\(k = 0, 1, 2, \ldots \) stages
B) Mixed-radix

\[N \neq r^k \]

Ex.: \[N = 32 = 4 \times 4 \times 2 = 2^5 \]

\[\text{radix 4} \}
\[\text{radix 4} \}
\[\text{radix 2} \]

II. Prime-Factor FFTs

\[N = \text{product of relatively prime numbers} \]

Ex.: \[7 \times 11 \times 13 = 1001 = N \]

III. Other FFTs

- Split-radix

- FFTW

\[\equiv \]
Calculating the IFFT

0) Design a separate IFFT processor

- Re-use a forward FFT engine to calc. IFFT()

1) \(a = \text{FFT}(\text{imag}(\text{in}) + j \cdot \text{real}(\text{in})) \)
 \(\text{out} = \text{imag}(a) + j \cdot \text{real}(a) \)

2) \(a = \text{FFT}(\text{conj}(\text{in})) \)
 \(\text{out} = \text{conj}(a) \)

3) \(a = \text{FFT}(\text{in}) \)
 \(\text{out} = [a(0), a(N-1), a(N-2), \ldots, a(2), a(1)] \)

Multi-rate signal processing

- Upsample

- Down-sampling
Upsampling

- To upsample by I, add $I-1$ zeros between samples

\[
\begin{align*}
\uparrow & \quad I \\
\end{align*}
\]
After upsampling, filter out $\frac{\pi}{2}$ to $\frac{3\pi}{2}$

"anti-image filter"

Downsampling

- To downsample by D, keep one of every D samples

Ex: 1 MSample/sec signal, 0-100 KHz interested

downsampling as much as possible
\(\sqrt{1} \) \(\frac{1}{4} \) 3

[Graph with frequency labels: 167 kHz, 333 kHz, \(2\pi /f \), \(f \)]

\(\sqrt{\text{maybe}} \) \(\frac{1}{4} \) 4

[Graph with frequency labels: 125 Hz, 250 Hz, \(f \)]

\(\sqrt{x} \) \(\frac{1}{5} \) 5

[Graph with frequency labels: 100 Hz, 200 Hz, \(f \)]

Viterbi's coding

[Diagram with data, coding, conventional code, Viterbi decoder, and ACS (Add, Compare, Select)]

1) Calculating the Trellis

- ACS - Add, Compare, Select
2) Find Most Likely Path
3) Trace back
4) Recover data bit

![Diagram]

branch metric A

state metric 0

state metric 1

branch metric B

compare

select

decision bit

ew state metric