Normally sat output is:

\[
\begin{align*}
(+) & \quad 011111111 \\
(-) & \quad 100000000
\end{align*}
\]

Examples:

<table>
<thead>
<tr>
<th>11-bit</th>
<th>3-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1023</td>
<td>+3</td>
</tr>
<tr>
<td>-1024</td>
<td>-4</td>
</tr>
</tbody>
</table>

asymmetric creates a bias causes problems:
- RF circuits
- accumulator in path
- effect is more:

1) signal that saturates frequently
2) " " have a narrow word width
If unacceptable, do symmetries saturation

\[\text{SAT}_{+1} = - \text{SAT}_{-1} \]

<table>
<thead>
<tr>
<th>11-bit</th>
<th>3-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1023</td>
<td>+3</td>
</tr>
<tr>
<td>-1023</td>
<td>-3</td>
</tr>
</tbody>
</table>

(+) $011111\ldots1$

(-) $100000\ldots01$

Now need to detect max neg. case

\[\text{in} = (\text{SAT}_{-10}+1) \]

Ex: 6-bit input \Rightarrow 5-bit output

Detect -16

\[\text{in} = 110000 \Rightarrow \text{out} = -15 \]

Latter:

\[\text{in} = 110001 \Rightarrow \text{out} = -15 \]
Saturnator:

Compressor:

+ more gentle magnitude reduction
- the signal is distorted at a smaller magnitude
- now is much more complex
- may require a large memory

Rounding
Format will determine behavior:
- unsigned
- 2's complement
- sign magnitude
- etc.

IEEE 754
- includes many rounding modes

Four main rounding modes functions:

1. round(·)
 - best general purpose
 - symmetric
 - max error of \(\frac{1}{2} \) LSB

2. fix()
 - truncate toward zero
 - max error 1 LSB
(3) floor()
 round towards $-\infty$
 max error 1 LSB

(4) ceil()
 round towards $+\infty$
 max error 1 LSB

Hardware Rounding

A) Truncation

XXX.XXXX

XXX.XX--

- don't even calculate truncated bits
- max err 1 post-rounded LSB

- Sign Mag

same as $\text{fix}() - \text{Sign Mag}$

\[
\begin{align*}
+5.7 &\rightarrow 5 \\
-5.8 &\rightarrow -5 \\
\end{align*}
\]
• 2's Complement
 \[\begin{align*}
 +5.7 & \rightarrow 5 \\
 -5.8 & \rightarrow -6
 \end{align*} \]

 \[\text{floor()} \]

 • Signed
 \[\text{fix()} \]
 \[\text{floor()} \]

 B) Rounding method #5
 "Add \(\frac{1}{2} \) LSB and Truncate"

 • Not in Matlab
 • Max error of \(\frac{1}{2} \) LSB

 \[\begin{align*}
 \text{XXX}.XX & \quad \text{in} \\
 YYYY.YXX & \quad \text{intermediate sum} \\
 YYYY... & \quad \text{out}
 \end{align*} \]

 • Often easy to add in "1"

Ex: [Diagram]

\[\begin{align*}
 \text{4 x 4 bit} & \rightarrow \text{5-bit}
\end{align*} \]
- **Zero case**

- **Better:**

 - Up signed
 - same as round(c)

 - Sign magnitude
 - same as round(c)

 - 2's complement
 - close to round(c)
3 cases:

1) Input `XXXXX.1000` and positive

 → `+∞` \(\text{same as round(}) \)

2) Input `XXXXX.0000` and negative

 → `+∞` \(\text{not same as round} \)

3) otherwise

 `same as round(}

Ex:

\[
(+) \quad XXXX.0
\]

\[
(+) \quad XXXX.1 \quad \{ \text{same as round} \}
\]

\[
(-) \quad XXXX.0
\]

\[
(-1) \quad XXXX.1 \quad \{ \text{same as round(}) + 1 \}
\]

Ex:

\[
(+) \quad XXXXX.000000
\]

\[
32 \quad \{ (+) \quad XXXXX.000000 \quad \{ \text{same at round(}} \}
\]

\[
32 \quad \{ (-) \quad XXXXX.000000 \}
\]

\[
(-) \quad XXXXX.100000 \quad \{ \text{same as round(}} + 1 \}
\]