Very long

\[X(t) \text{ random} \]

\[h(n) \]

\[y(t) \]

\[\approx H(s) \]

Estimating the spectral mag of a signal

- \text{abs} (\text{fft}(x))

- \text{psd}(x)

- \text{spectrum}(x) \rightarrow \text{pwelch}(x)
FIR Filter Hardware

\[y(n) = h(n) + x(n) \]

\[= \sum_{k=-\infty}^{\infty} x(k) h(n-k) \]

Assume \(h \) has length 3

\[y(n) = x_n \cdot h_2 + x_{n+1} \cdot h_1 + x_{n+2} \cdot h_0 \]
- Can scale the magnitude of the entire filter without changing the frequency response.

 - Watch out for:
 - Overflow - if scaled larger
 - Quantization noise - if scaled smaller
If \(\text{wffe} = [9 \ 18 \ 45 \ 18 \ 9] \)

12 PPs

\[0.899 \times \text{wffe} = [8 \ 16 \ 40 \ 16 \ 8] \]

1 \ 1 \ 2 \ 1 \ 1

6 PPs

Diagram:

- **Initial**
 - FIR
 - A

- **Ideal #1**
 - 0.899
 - FIR
 - A

- **Ideal #2**
 - 0.899
 - FIR
 - A'

- **Hopefully not necessary**
 - 0.899
 - FIR
 - \(\times 0.125 \)
 - A
Worst-case inputs

For all adders, make sure output width is sufficient for all inputs.

What is the worst-case for an FLP?

Exs 4-bit inputs

\[x \rightarrow y \]

\[[-8, +7] \]

\[\text{coeffs} = [-2, 3, 7, 3, -2] \]

\[x(n) \quad h(n) \]

\[\text{Not:} \quad -8, -2, 3, 7, 3, -2 = -8 \times 9 = -72 \times \]

\[\text{Not:} \quad +7, +7, +7, +7, +7, +7 = +7 \times 9 = +63 \times \]

1)

\[x(n) \]

\[1 \quad 7 \quad 7 \]

\[-8 \]

\[16 + 21 + 49 + 21 + 16 = 123 \]

2)

\[x(n) \]

\[7 \quad 7 \]

\[-8, -8, -8 \]

\[-14 - 24 - 56 - 24 - 14 = -132 \]
- Large
 Peak-to-average ratios

1) Widen output word enough
 - Can be wasteful

x 2) Let it overflow
 - Risks bad idea

3) Saturate
 - Distortion
 + Efficient in HW

4) Compression
 + Friendly form of saturation
Saturation

\[n \rightarrow \frac{1}{2} n \]

\[n \rightarrow \frac{1}{2} n \]

Saturation

Remaking

127

"Chipping"

-128

\[
\begin{array}{cccc}
\times & \times & \times & \times \\
Y & Y & Y & Y \\
\end{array}
\]

Two steps:

1) Saturate input to SAT-H1 and SAT-L0

2) Delete redundant bits if saturation produced any.

Often efficient to do both steps simultaneously.
Ex: input 4-bit 2's complement $[-8, +7]$
output 3-bit $[-4, +3]$

SW: if $in > sat_{HI}$ $=$ else if $in < sat_{LO}$ $=$ else $= $

HW: