Digital Filtering

Shape the spectrum of a signal
-Removing

[Graph]

-Enhance

[Graph]

[bass boost]
- Shape spectrum

(i)

Filter shape

(ii)

- Consider
 - Frequency domain
 - Time domain
If:

- $x(t)$ is the input signal
- $X(s)$ is its Fourier transform

$h(s)$ is the filter specification
$h(t)$ is the inverse Fourier transform of $H(s)$

1) $y(t) = x(t) * h(t)$ % convolution
2) $Y(s) = X(s) H(s)$ % multiplication

I. Frequency domain

- Point-by-point multiplication

- $X(s)$
- Input
- $H(s)$
- Filter
- $Y(s)$
- Output
II. Time Domain

\[y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k) \]

- \(N\) is length of \(h\) - filter,
- Requires \(N\) multiplies, \(N-1\) adds \(\} \) each output \(y(n)\)

\[x(n) \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \]
\[h(n) \quad x \quad x \quad x \quad x \quad x \]
\[y(n) \quad \Delta \]

MATLAB

\[\text{Out} = \text{filter} \left(\text{coeffs, 1, in} \right) \]

Complex \(h(t)\) - more complex calculations

Real \(h(t)\) - preferred

\[\text{Imag} \left(\text{Even}(s) \right) = 0 \]
\[\text{Real} \left(\text{Odd}(s) \right) = 0 \]
\[F(z) = \text{Real} \left(\text{Even} \right) + \text{Imag} \left(\text{Odd} \right) \]
In the time domain, choose a real and even filter

\[H(s) \] then real and even

\[H(s) = H(-s) \]

→ linear phase

Filter \(x(t) \) in time domain \(\rightarrow y(t) \)

Approach 1

convolve \(x(t) + h(t) = y(t) \)

Approach 2

1) Transform \(h(t) \) \(\rightarrow H(s) \)
2) Transform \(x(t) \) \(\rightarrow X(s) \)
3) Multiply \(X(s) \) \(\times H(s) = Y(s) \)
4) Inverse transform \(Y(s) \) \(\rightarrow y(t) \)

Debugging a filter whatever is appropriate

dist min\(\leq [000,1000] \) power of 2
Digital Filter Coefficient design

- Butterworth
- Chebyshew

Parks-McClellan Method

- Published in early 70's
- Iterative algorithm
- Computationally efficient
- Works by inputting
 1) length of filter - $h(t)$

 2) frequency/magnitude pairs
- See Oppen & Sommer
 - Given in dB
 - Min/max attenuation/ripple

Over frequency regions

Ex: Low-pass filter
- Max ripple ± 4 dB in passband
- Sampling frequency 100 MHz
- Pass band is DC - 12.5 MHz
- Min attenuation 22 dB 19 - 50 MHz
\[
\begin{align*}
100 \text{ MHz} & \rightarrow 2\pi \\
50 \text{ MHz} & \rightarrow \pi \\
12.5 \text{ MHz} & \rightarrow \frac{\pi}{4} = 0.25\pi \\
14 \text{ MHz} & \rightarrow 0.38\pi \\
\end{align*}
\]

\[
\text{freq} = [0, 0.25, 0.38, 1]
\]

\[
\text{mag} = [1, 1, 0, 0]
\]

don't care

\[
\text{remez}()
\]

help remez

first argument = # taps (coeffs) - 1

\[
\text{coeffs} = \text{remez} (20, [0, 0.25, 0.38, 1], [1, 1, 0, 0]); \quad \% 21 \text{tap}
\]

To see coeffs,

\[
\text{stem}([-10:10, \text{coeffs}]);
\]
Solving the frequency response of filters

I. Method I - freqz() in MATLAB

- exact calc.
- very fast

\[|A(f)| \]

\[h(t) \]

\[\text{freqz()} \]

Ex: using FFT
II. Method II

1) Make a "flat" "white" spectrum input signal

2) Send signal into the filter + look at output spectrum

 - requires many samples for accurate output

 - slower

 + sometimes the only way

 • HW rounding

 • signal saturation

 • matlab code

 \[\text{in} = \text{rand}(1, 100000) - 0.5 \; \]

 \[\text{out} = \text{conv} \left(\text{wells}, \text{in} \right) + 0.25 \; \] 90 LSB bias

 \[\text{abs} \left(\text{fft} \left(\text{out} \right) \right) \]

 \[\text{psd} \left(\text{out} \right) \]

 \[\text{spectrum} \left(\text{out} \right) \]