Filtering
- Remove parts of a signal
- Enhance
- Sharpen spectrum

Often specified in the frequency domain

Notation:
- $x(t)$: Signal
- $X(s)$: Its Laplace transform
- $H(s)$: Filter
- $h(t)$: Inverse Laplace transform of $H(s)$

$y(t) = x(t) * h(t)$ (Convolution)
$Y(s) = X(s)H(s)$ (Multiplication)

Diagram:
- Input $x(t)$
- Filter $H(s)$
- Output $y(t)$
I. Filter in Frequency domain
 term-by-term mult.
 * in matlab

II. Filter in Time domain

 \[y(n) = \sum_{k = -\infty}^{\infty} x(k) h(n-k) \]

 \(N \) is length of \(h \) (filter)

 \[x(n) \quad \ldots \quad h_3 \quad h_2 \quad h_1 \quad h_0 \quad \]
 \[h(n) \quad y(n) \]

 Each output requires \(N \) mults and \(N-1 \) adds

 Matlab: \(\text{out} = \ttt \text{filter} \left(\text{coeffs}, 1, \text{in} \right) \);

 \[y \quad h \quad x \]

 Want real \(h(n) \)

 Normally choose real even \(H \), and \(h \)

 \[\Rightarrow H(s) = H(-s) \]
When $x(t)$ is in the time domain, two ways to find $y(t)$:

1) Convolve $x(t) * h(t)$

2) a) Transform $h(t) \rightarrow H(s)$ — done only once (2)
 b) Transform $x(t) \rightarrow X(s)$
 c) Multiply $X(s) \cdot H(s) \rightarrow Y(s)$
 d) Inverse transform $Y(s) \rightarrow y(t)$

Digital Filters
- Butterworth
- Chebyshev

Books - McClellan method to generate coefficients
- Published in early 70s
- Iterative
- Works by specify:
 1) Length of Filter
 2) Frequency/magnitude pairs
mag. often in dB

Example:

- Low pass filter
- Max passband ripple of ± 0 dB
- Sampling freq of 100 MHz = f_s
- Passband: 0 C - 12.5 MHz
- Stopband: Min attenuation of 20 dB

\[
\text{from } 19 \text{ MHz} \rightarrow 50 \text{ MHz}
\]

\[
0.35 \pi \quad \frac{\pi}{2}
\]

\[
f [0 \ 0.25 \ 0.38 \ 1]
\]

\[
\text{mag } [1 \ 1 \ 0 \ 0]
\]

- remez ()
See the freq response of a filter

Method 1 - `frez()` in matlab
 + Exact freq response
 + Very fast

Ideal specifications

![Diagram](image-url)
Method 2

1) Make a flat (white) spectrum input signal

2) Put signal into filter

 - Need many samples 10^5?
 - Much slower than #1

 + Sometimes the only way
 - rounding
 - saturation

1) abs (fft (x))

2) psd ()

3) spectrum () → pwelch ()