
VERILOG 2:

LANGUAGE BASICS

© B. Baas 35

Verilog module

• Modules are basic building blocks. These are two example
module definitions which you should use:

// Safer traditional method

module abc (in1, in2, out);

input in1;

input in2;

output out;

<body of module>

endmodule

or

// Shorter, info not repeated

module abc (

input in1,

input in2,

output out // no comma on last signal

);

<body of module>

endmodule

Others exist, but use only one of these two forms in this class

abc

in1 in2

out

© B. Baas 36

Verilog Comments and Values

• Comments
– Single line

assign b = c; // A comment

– Multiple lines
/* This module filters a series of images at a

rate of “f” frames per second */

• Values of a single wire or register (not buses)
– 0 and 1 // Binary zero and one

– x or X // Unknown value due to things such as uninitialized state or
// two drivers driving the same net

– z or Z // High impedance, e.g., a node not driven by any circuit.
// This is identical to the “z” state of a tri-state output driver.

– others // Don’t worry about others

© B. Baas 37

Verilog Constants

• Can be specified in a number of formats; use only these four in this class:

– binary

– hexadecimal

– octal

– decimal

• Syntax: [size.in.bits]’[first.letter.of.base.of.representation][value]

• Underscore characters (“_”) are ignored and can greatly help readability

• Make sure to specify enough digits to cover the full range of the constant. Although
Quartus will probably not complain, other CAD tools may do something you are not
expecting especially with more complex number formats.

• Examples:
Value in binary Comment

• 1’b0 0

• 1’b1 1

• 4’b0101 0101

• 5’h0B 01011 // two hex digits for 5 bits, range of [0, +31]

• 16’h3F09 0011111100001001 // four hex digits for 16 bits

• 12’b0000_1010_0101 000010100101 // underscores are ignored

• 8’d003 00000011 // three base 10 digits for 8 bits
// which has range of [0, +255]

© B. Baas 38

Constants With
parameter and `define

• There are two main methods to simplify constants by using
readable text to represent a number
– parameter

• Local to a module

• Usage:
parameter HALT = 4’b0101;

…

if (inst == HALT) begin

• Definitely use this for state names in state machines in this class

– `define macro

• Global text macro substitution using a compiler directive

• Usage:
`define HALT 4’b0101

…

if (inst == `HALT) begin // requires “back tick” “grave accent”

• Best when helpful to put all definitions in a global file; probably do not
use in this class

Verilog Operators

• Operators: bit-wise
– negation ~

– AND &

– OR |

– XOR ^

– Shift a left by b bits a << b

– Shift a right by b bits a >> b

• Operators: logical (e.g., test for if-then-else)
– negation !

– AND &&

– OR ||

• Basic arithmetic
– addition +

– subtraction −

– multiplication *

– division /

– modulus %

© B. Baas 39

Verilog Operators

• Equality, inequalities, and relational operators—all
return a 1-bit true or false result

– equal ==

– not equal !=

– less than <

– greater than >

– less than or equal <=

• Not to be confused with the non-blocking assignment which
is used with flip-flops

– greater than or equal >=

© B. Baas 40

Verilog Operators

• Concatenation x = {a,b,c}

– Each input may be a wire or a reg

– The output may be a wire or a reg

– Example: if g, h, j, l, m are all 6 bits wide, then
all = {g,h,j,k,m}

is 30 bits wide

– Example: to replicate the sign bit of a
4-bit value a two times and assign it to b:

reg [5:0] b;

b = {a[3], a[3], a};

If a were 1010, then b would be 111010

© B. Baas 41

g

h

j

k

m

all{ }

© B. Baas 42

* 3 Ways to Specify Hardware *

• There are three primary means to specify hardware circuits:
1) Instantiate another module

2) wires, assign statements

3) registers, always blocks

• Example instantiating modules inside a main module

module abc (in1, in2, out);

input in1;

input in2;

output out;

assign...

always...

always...

square_root sqr1 (clk, reset, in1, out1);

square_root sqr2 (clk, reset, in2, out2);

endmodule

abc

module
name

module
name

instance
names square_root

sqr1

square_root

sqr2

© B. Baas 43

Concurrency

• All circuits operate
independently and
concurrently
– Different from most

programming paradigms

• This is natural if we
remember “hardware
verilog” describes
real circuit hardware:
transistors and wires

101100…

111001…

010101…

(wire)

(reg)

(wire)

© B. Baas 44

Declaring and Referencing Signals

• Single-bit wire and reg signals
– wire reset;

– reg start;

• Multiple-bit signals
– By convention, write [(MSB-1):0]

• Multiple-bit wire and reg signals
– wire [7:0] phase; // 8-bit signal

– reg [31:0] elevation; // 32-bit signal

• To reference part of a multi-bit signal
– phase[0] // LSB of phase

– elevation[7:0] // lowest byte

© B. Baas 45

Verilog Instantiation Syntax

• Ports of an instantiated module can be connected to signals referenced in
the module’s declaration assuming
they are in the same order but this
is dangerous so don’t do it. Instead
write out both the port name and
the connected signal as shown below.

• // Don’t use this method! It works but typos can be difficult to catch

abc instance1 (phase3, angle, magnitude3); // phase3 connected to in1, etc.

• // This is good. Ports are in the same order as in the module declaration

abc instance2 (

.in1 (phase1),

.in2 (angle),

.out (magnitude1)); // no comma on last port

• // This is good. Ports are not in the same order as in the module declaration

abc instance3 (

.in2 (angle), // in2 comes before in1 here but everything

.in1 (phase2), // still works ok

.out (magnitude2));

module abc (in1, in2, out);

input in1;

input in2;

output out;

...

endmodule

© B. Baas 46

Verilog Instantiation Example

• In this example, two copies of the module “abc” are instantiated
in the higher-level module. As described in a later slide, only
wires can connect to the outputs of modules.

proc1
(abc)

a

b

proc2
(abc)

module abc (in1, in2, out);

input in1;

input in2;

output out;

...

endmodule

wire phase; // must be a wire

wire mag1; // must be a wire

// a, b, c may be wires, regs,

// or inputs of the module

abc proc1 (

.in1 (a),

.in2 (b),

.out (phase));

abc proc2 (

.in1 (phase),

.in2 (c),

.out (mag1));

phase

c

mag1in1

in2

out in1

in2

out

wire

wire

reg

Describing Hardware

• As previously stated, there are three
main ways to describe hardware
circuits which produce a “signal”,
“electrical node”, “word”, (whatever
you like to call it) inside a module
definition:

– Instantiate a module which has
wires connected to its outputs

– The assign command which defines
a wire

– The always command which defines
a reg

• All of these must be declared at the
module definition level—not inside
each other (e.g., a module instance
can not be declared inside an always
block)

© B. Baas 47

assign

statement

always

block

module

instance

module module_name (port_name_list);

endmodule

module definition

Module Inputs and Outputs

• There are three main
possible inputs to a
module instance:

– A wire

– A reg

– An input into the
module (behaves just
like a wire)

• The output of a module
instance is always a
wire, at least for this
class

– This is perhaps the most
tricky case

© B. Baas 48

wire
module

instance
reg

input

wire

module definition

module module_name (port_name_list);

endmodule

wire

wire

reg

Module Outputs

• All of these signal
types may be used as
outputs in a module
definition:
– wire

– reg

– Another possibility
which is typically
uncommon is for an
input to pass directly
to a module output
port

© B. Baas 49

assign

statement

always

block

module

instance

input (output)

module definition
module module_name (port_name_list);

endmodule

wire

wire

wire

wire

© B. Baas 50

2) wire, assign

• Picture “always active” hardwired logic

• For now, declare all wires
wire out;

// a and b can be wires or regs or module inputs

a

b
out

© B. Baas 51

2) wire, assign

• Example:

wire out;

assign out = a & b;

a
&

b
out

© B. Baas 52

2) wire, assign

• Example: multibit operands

wire [3:0] c, d; // c and d are both 4 bits

wire [4:0] sum; // sum is 5 bits so no overflow

assign sum = {c[3],c} + {d[3],d}; // sign extend inputs

// for 2’s complement

c
+

d
sum

© B. Baas 53

3) reg, always

• Picture a much more general way of assigning “wires” or
“signals” or “buses”

• “if/then/else” and “case” statements are permitted

• You could, but don’t use “for loops” in hardware blocks (use in
testing blocks is ok)

• Sequential execution

– statements execute in order to specify a circuit

• Syntax:
always @(sensitivity list) begin

statements
end

• Operation:
statements are executed when any signal in sensitivity list
changes

© B. Baas 54

3) reg, always

• Including all inputs in the sensitivity list can be tedious and prone
to errors especially as the number of statements in the always
block grows
always @(sensitivity list) begin

statements
end

• Verilog 1364-2001 allows the use of the
always @(*)

or
always @*

construct which tells the simulator to include all inputs in the
sensitivity list automatically. This can be very handy but is not
supported by all modern CAD tools.

• Ok to use for this class

– If you discover any issues, email the instructor and your TA

© B. Baas 55

3) reg, always

• Example: there is no difference whatsoever in this
AND gate from the AND gate built using assign

reg out;

always @(a or b) begin

out = a & b;

end

a
&

b
out

If-Then-Else Statement

• The general syntax is as follows:

• Or, taking advantage of the fact that a begin–end block acts as a
single statement:

© B. Baas 56

if (condition)
statement

else

statement

if (condition) begin
statement;
statement;
...

end

else begin

statement;
statement;
...

end

If-Then-Else Statement

• Nesting an if block within another yields “else-if” blocks:

© B. Baas 57

if (condition1) begin
statement;
statement;
...

end

else if (condition2) begin
statement;
statement;
...

end

else begin

statement;
statement;
...

end

assign statement inputs

• In the same way, there are
three main possible “inputs”
to an assign statement:

– A wire

– A reg

– An input into the module

• Example:
input a;

wire b;

reg c;

wire x;

assign x = a & b | c;

© B. Baas 58

wire
assign

statement
reg

input

wire

module definition

module module_name (port_name_list);

endmodule

always block inputs

• In the same way, there are
three main possible “inputs”
to an always block:

– A wire

– A reg

– An input into the module
(technically
still a wire)

• Example:
input a;

wire b;

reg c;

reg x;

always @(*) begin

x = a & b | c;

end

© B. Baas 59

wire
always

block
reg

input

reg

module definition

module module_name (port_name_list);

endmodule

© B. Baas 60

Special Block Style: initial

• This block executes only once at the beginning of the
simulation. It is the normal way to write testbench
code.

initial begin

...

end

– Example: circuit that generates a reset signal at the beginning
of a simulation

• For our usage, initial blocks are used in only two cases
1) Test bench code

2) Hardware code only to specify the contents of a ROM
memory (for EEC 180 FPGAs)

© B. Baas 61

Special Block Style: always begin

• This block executes repeatedly; it begins another
execution cycle as soon as it finishes. Therefore it must
contain some delay. This is a good construct for a clock
oscillator.

always begin

...

end

– Example: clock signal generator

– Can view as an always @(sensitivity list) construct
where the sensitivity list is always activated immediately

• Verilog suitable for always blocks is also suitable for
initial blocks

© B. Baas 62

Example: 2:1 Multiplexer

• Example #1

reg out;

always @(a or b or s) begin

if (s == 1'b0) begin

out = a;

end

else begin

out = b;

end

end

a

b
out

s

0

1

a

b

© B. Baas 63

Example: 2:1 Multiplexer

• Example #1

• Normally always include begin and end statements even though
they are not needed when there is only one statement in the
particular block. Text struck out below could be taken out but
always add it anyway in this class.

reg out;

always @(a or b or s) begin

if (s == 1'b0) begin

out = a;

end

else begin

out = b;

end

end

out

s

0

1

© B. Baas 64

Example: 2:1 Multiplexer

• Example #2

• May be clearer in some cases, e.g., s==1’b0 sets off auto airbag

reg out;

always @(a or b or s) begin

out = b;

if (s == 1'b0) begin

out = a;

end

end

a

b
out

s

0

1

© B. Baas 65

Example: 2:1 Multiplexer

• Example #3

• May be clearer in some cases

reg out;

always @(a or b or s) begin

out = a;

if (s == 1'b1) begin

out = b;

end

end

a

b
out

s

0

1

© B. Baas 66

Example: 2:1 Multiplexer

• Example #4

• Simpler but less clear way of writing if/then/else called
"inline if" or "conditional operator" which is also found in
some programming languages

reg out;

always @(a or b or s) begin

out = s ? b : a;

end

a

b
out

s

0

1

© B. Baas 67

Example: 2:1 Multiplexer

• Example #5

• The inline conditional operator can also be used to define wires

wire out;

assign out = s ? b : a;

a

b
out

s

0

1

Case Statement

• The general syntax is as follows:

• case_expression

– normally a multi-bit bus of wire or reg

• valuei targets

– normally 0, 1, or
a wildcard character (for casez and casex)

• statement

1) An arbitrary-length block of verilog
code beginning with “begin” and
ending with “end”
begin

a = b + c;

....

end

2) A single verilog statement

• If multiple valuei targets match the case_expression, only the first one
that matches is taken

© B. Baas 68

case (case_expression)
value1: statement
value2: statement
value3: statement
...

valueN: statement
default: statement

endcase

Case Statement: default

• The default case is optional

• It may be beneficial to set the output to a
special value such as “x” even if you expect
the default case will never be reached

– For example:
default: begin

out = 4’bxxxx;

end

– Setting unused values to “x” makes them
“don’t care states” which should allow the
synthesis tool to simplify logic

– Setting unused input values to an easily-
recognizable value (such as x’s) could make
mistakes easier to spot during debugging

– Setting the output to “x” may cause
warnings with some CAD tools

© B. Baas 69

case (wire or reg)
value1: statement
value2: statement
value3: statement
...

valueN: statement
default: statement

endcase

© B. Baas 70

casez and casex

• case

− Normal case statement

• casez

− Allows use of wildcard “?” character for don’t cares in the
target values

casez(in)

4’b1???: out = r;

4’b01??: out = s;

4’b0000: out = t;

default: out = 4’bxxxx;

endcase

• casex

– Do not use it for this class. It can use “z” or “x” logic

– Recommendation: probably never use it for hardware

• Example: 4:1 multiplexer
reg out; // must be a reg to be set in an always block!

always @(a or b or c or d or s1 or s0) begin

case ({s1,s0}) // concatenate two select signals

2’b00: begin

out = a;

end

2’b01: begin
out = b;

end
2’b10: begin
out = c;

end

2’b11: begin

out = d;

end

default: begin // does nothing

out = 1’bx;

end

endcase

end // end of always block

s1,s0

c

d

© B. Baas 71

Example: 4:1 Multiplexer

a

b
out

00

01

10

11

s1,s0

0

d

© B. Baas 72

Example: 4:1 Mux with zero on
two inputs

• Example #1

reg out; // must be a reg to be set in an always block!

always @(c or d or s1 or s0) begin

case ({s1,s0})

2’b00: begin

out = c;

end

2’b01: begin
out = 1’b0;

end
2’b10: begin
out = 1’b0;

end

2’b11: begin

out = d;

end

default: begin

out = 1’b0; // zero

end

endcase

end // end of always block

c

0
out

00

01

10

11

s1,s0

0

d

© B. Baas 73

Example: 4:1 Mux with zero on
two inputs

• Example #2

• Here the case’s default section is used

reg out; // must be a reg to be set in an always block!

always @(c or d or s1 or s0) begin

case ({s1,s0})

2’b00: begin

out = c;

end

2’b11: begin

out = d;

end

default: begin

out = 1’b0;

end

endcase

end // end of always block

c

0
out

00

01

10

11

s1,s0

0

d

© B. Baas 74

Example: 4:1 Mux with zero on
two inputs

• Example #3

• Here out is set to a default value before the case block

reg out; // must be a reg to be set in an always block!

always @(c or d or s1 or s0) begin

out = 1’b0; // set out to a “default” value

case ({s1,s0})

2’b00: begin

out = c;

end

2’b11: begin

out = d;

end

endcase

end // end of always block

c

0
out

00

01

10

11

s1,s0

0

d

© B. Baas 75

Example: 4:1 Mux with zero on
two inputs

• Example #4

• Here if statements are used. Clearly there are many solutions.

reg out; // must be a reg to be set in an always block!

always @(c or d or s1 or s0) begin

out = 1’b0; // set “default”

if ({s1,s0} == 2’b00) begin
out = c;

end

if (s1==1’b1 && s0==1’b1) begin

out = d;

end
end // end of always block

c

0
out

00

01

10

11

