
VERILOG 4:

COMMON MISTAKES

© B. Baas 101

Common Mistake #1a:
assign in an always block

• There is no “assign” keyword in always blocks!

• The purpose of an always block  to define a reg

• See the slide titled Describing Hardware in the
Verilog 2 Handout

reg out;

always @(a or b) begin

out = a & b;

assign out2 = a ^ b;

end

© B. Baas 102

Common Mistake #1b:
module instantiation in an always block

• There are no module instantiations in always blocks!

• The purpose of an always block  to define a reg

• See the slide titled Describing Hardware in the
Verilog 2 Handout

reg out;

always @(a or b) begin

out = a & b;

add8 abc_add (

.in1 (a),

.in2 (b),

.sum (output));

end

module

endmodule

© B. Baas 103

Common Mistake #2:

Setting the same reg in multiple always blocks

• Simulators will typically do what
you tell them to do

• Synthesis tools and lint checkers
will typically give a warning

• Never do this in Hardware verilog

• You might be able to get away
with it in testing verilog but don’t
do it

always @(a or b) begin

x = a ^ b;

end

always @(reset) begin

x = 1’b0;

end

© B. Baas 104

Mistake #3: Inferring State In Combinational
Circuits By: An Incomplete Sensitivity List

• always @(a) begin // missing b

out = a & b;

end

• out updates when a changes as expected

• out does not update when b changes!

– Put another way, b can change all it wants
but out will not update—this requires a memory
element to remember the last value of out

• Synthesis tools and lint checkers will give
a warning

• Using the construct new in Verilog 1364-2001:
always @(*)

or
always @*

eliminates this type of bug, but it is not supported by all modern CAD tools

a out
b

edge

detector

G

// this "always" block does not

// instantiate combinational logic

always @(freq or xyz or abc) begin

if (xyz == 4’b0010) begin

freq_c = abc;

end

case (freq) begin

3’b000: freq_c = abc;

3’b001: freq_c = abc + 3’b001;

endcase

end

© B. Baas 105

• Example: attempted combinational circuit
– If xyz==4’b0010, freq_c is a function of the inputs

– If freq==3’b000 or 3’b001, freq_c is a function of the inputs

– Otherwise, freq_c keeps its old value—which implies memory is needed!
Which means our combinational circuit is broken.

– A failure occurs when the inputs of a statement are different from the
signals used for the if or case condition

Mistake #4: Inferring State In Combinational
Circuits By: Not Setting a reg In All Paths

freq_c

logicabc
xyz

freq MEM

// this "always" block does instantiate combinational logic

always @(freq or xyz or abc) begin

// “default” section of always block

freq_c = freq; // some default value

// main logic block

if (xyz==4’b0010) begin

freq_c = abc;

end

else begin // perhaps not always applicable

freq_c = ...;

end

case (freq) begin

3’b000: freq_c = abc;

3’b001: freq_c = abc+3’b001;

default: freq_c = ...; // perhaps you know freq should never be anything

endcase // other than 000 or 001, or perhaps you do want

end // freq_c equal to something in these six cases

© B. Baas 106

• Example: successful combinational circuit
– Solution: freq_c is set regardless of the values of all inputs

– One solution: always declare default values at beginning of always
blocks

– If helpful, declare default case in case statements

Mistake #4: Inferring State In Combinational
Circuits By: Not Setting a reg In All Paths

freq_c

logicabc
xyz

freq
Fixes
all

Fixes
the
if
block

Fixes
the
case
block

© B. Baas 107

For Combinational Circuits:
Avoid Inferring State by:

1. Including all input variables in the sensitivity list!
– Use always @(*)

2. Set the value of all regs in all paths through every
always block

– A nice solution is to set default values for all output
variables immediately after entering an always block

• You will eliminate the chance of this bug if you do

