
VERILOG 1:

AN OVERVIEW

© B. Baas 32

Verilog in This Course

• On one hand...
– The important content of the course is core digital systems

design principles

– Verilog is simply the language by which you communicate
your design to the simulator and synthesis tool

– The core principles apply regardless of the HDL language
you use

• However, at the same time...
– Almost all of your submitted work in this class will require

you to write good quality verilog

– You must have a strong working knowledge of the basic
features of the language

– Every hardware description method/language will have
many of verilog’s features

© B. Baas 33

Verilog is a
Hardware Description Language (HDL)

• You’ll design far better hardware if you think of it differently
than a standard programming language

• A “standard programming language” such as C, C++, python,
java, etc.:

– Is a way to code an algorithm or is a way to calculate a result

– Is written by a software writer

– Often results in a more elegant solution when the programmer uses
finer features of the language

• On the other hand, a hardware description language:

– Is a way to describe hardware

– Is written by a hardware designer

– Results in a far better solution when the designer uses only the
most basic features of the language

© B. Baas 34

Write Clean ”Synthesizable”
Verilog

• Why are hardware designs made with simpler
language features better?
– Synthesis tools will have fewer opportunities to interpret (destroy)

the circuit you really want

– Less-commonly-used CAD tools (such as place & route, design rule
checking (DRC), layout versus schematic (LVS), formal verification,
automatic test pattern generation (ATPG), etc.) often do not work
properly with uncommon language constructs

• In this class:
– To engrain good practices, use only the simplest constructs shown

in handouts, lectures, and labs to receive full credit

– Corollary: do not copy code off the web or other outside sources!

• No prize for dense cryptic code except a better
chance for non-functional time-consuming designs

© B. Baas 35

The Design Process

• Design process
– Think

– Draw diagrams of hardware, figure out where logic and
registers go, choose signal names carefully

– Think

– Then…

• Write verilog

• Test it

• Optimize it

"A man who carries a cat by the tail learns something he can learn in no
other way" -Samuel Clemens

© B. Baas 36

Writing Efficient Code

• Think about what kind of hardware will result from
some particular code even if the code looks simple

if (x<y) begin

a = 4’b0001;

end

• An inequality requires a slow carry-propagate
subtractor. It is simplified since the sum bits do not
need to be computed, but the slow carry-out of the
entire adder is needed

• Think about the hardware you want and what you’ll
get with the verilog you write
– Example: A 4× upsampler could be built with a 4-input mux;

why not use a much-simpler AND?

© B. Baas 37

Verilog Simulator Tools

• Mentor Graphics

– Modelsim

• Cadence

– NC Verilog – verilog simulator

– Simvision – waveform viewer

– Verilog XL – perhaps no longer supported? slower run time, but
faster start up time as it spends less time compiling before running

• Often gives different (helpful!) and slightly more descriptive
error messages than NC Verilog

• Synopsys

– VCS – similar to NC Verilog

– Virsim – waveform viewer and environment

• Many others…

© B. Baas 38

Verilog vs. VHDL

• Verilog
– Invented in 1983 at Automated Integrated Design Systems (later

Gateway Design Automation) which was purchased by Cadence
in 1990. It was transferred into the public domain in 1990 and it
became IEEE Std. 1364-1995, or Verilog-95.

– Later versions include

• Verilog-2001 aka IEEE 1364-2001

– Added signed (2’s complement) arithmetic support

– Added support for combinational always @(*)

• Verilog-2005 aka IEEE 1364-2005

– Strong similarities to C

– Seems to be more commonly used in high-tech companies

© B. Baas 39

Verilog vs. VHDL

• VHDL (VHSIC Hardware Description Language)
– Published in 1987 with Dept. of Defense support as IEEE Std.

1076-1987. Updated in 1993 as IEEE Std. 1076-1993, which is
still the most widely-used version.

– Later versions in 2000, 2002, and 2008.

– Strong similarities to Ada

– The only(?) HDL language used in government and defense
organizations, and seems to be more often used in east-coast
companies. Widely taught in universities ↔ used in
textbooks—who started it?!

© B. Baas 40

Hardware Verilog vs.
Testing Verilog

• We make a strong distinction between “Hardware” verilog
blocks vs. “Testing” verilog blocks

– Hardware verilog

• Only the simplest, cleanest code

– Testing verilog (referred to as a “testbench”)

• Any code style is fine

• Having said that, clear code is always best

abc

in1 in2

out

HW

(abc.v)

Testbench

