SYNTHESIS

Synthesis

- Involves synthesizing a gate netlist from verilog source code
- We use *Design Compiler* (DC) by Synopsys which is the most popular synthesis tool used in industry
- Target library examples:
 - Standard cell (NAND, NOR, Flip-Flop, etc.)
 - FPGA CLB
- Other key files
 - source verilog (or VHDL)
 - compile script
 - output gate netlist
 - many reports

Standard Cell Library

 We currently use the 45 nm NanGate FreePDF45 Open Cell Library http://www.nangate.com/?page_id=2325 which is an open-source library developed by NanGate Inc, http://www.nangate.com

It contains "62 different functions ranging from buffers to scan flip-

flops with set and reset, including specialized low power cells

with multiple drive strength variants, the library includes over 170 different standard cells."

Compile Optimization Parameters

- There are many many configuration parameters which can be tuned to optimize the result of synthesis
- For homework/projects in this class, do not change any of these optimization parameters since this is not the focus of the class

Only parameters to select input files should be changed

 Please talk to me if you would like to modify the script more extensively

Synthesis Key Files

- Makefile
 - Contains all commands needed for simulation and synthesis
 - Requires you to enter the top-level design name at the top of the file
 - Type "make <return>" to see make targets and instructions
- dc-template.tcl
 - Template used to generate a customized command file for Design Compiler
 - Do not edit this file unless you are told you need to
- .synopsys_dc.setup
 - Do not edit this file
 - Watch out for it since it appears in linux only with 'ls –a' and not just 'ls'
- abc.v
 - Very simple example design with 2-bit and 32-bit adders, and registers
- abc.vfv
 - File that contains all source verilog files for simulation (NCVerilog or Verilog-XL)
- abc.vfs
 - File that contains all source verilog files for synthesis (Design Compiler)

Makefile

```
rattle 179> make
Make targets. Either change module name in Makefile line 35 or add the
text 'NAME=xyz' after 'make' for simulation and synthesis targets below.
  make
                          print this help summary
  make clean
                        deletes some generated files
  make cleanall
                        deletes all generated files
Make targets for simulation
                         compile only with .vfv and NCVerilog
  make compile
  make run
                     run with NCVerilog
  make viewer
                         start simvision
Make targets for synthesis
  make check
                          compile only with .vfs and NCVerilog
  make synth
                     synthesize default module
Recommended procedure to synthesize top-level module 'xyz'
  1) change 'NAME := CHANGE ME' to 'NAME := xyz' at top of Makefile
  2) add filenames of all modules to be synthesized to file xyz.vfs
  3) 'make check' and fix any errors
  4) 'make synth'
Alternate procedure
  1) add filenames of all modules to be synthesized to file xyz.vfs
  2) 'make NAME=xyz check' and fix any errors
  3) 'make NAME=xyz synth'
```


Synthesizing Hardware without Registers

- For quick estimates of combinational blocks, it is often helpful to synthesize a hardware design that does not contain registers
- But Design Compiler will give an "Unconstrained Paths" error if there is no clock signal and the *.tim timing report will not have necessary information
- To solve this, add a "clk" clock input to the hardware module that does not connect to anything.
 There will still be the following error which can be ignored:

```
port 'clk' is not connected to any nets. (LINT-28)
```

```
// or2.v
// practice with a pure-combinational circuit
`timescale 10ps/1ps
`celldefine
module or2 (
   in0,
   in1.
   out,
   clk
   );
   //---- Inputs/outputs
  input
          [1:0]
                        in0;
  input
          [1:0]
                        in1;
   output [1:0]
                        out;
   input
                        clk:
   //---- 2-bit adder
  wire [1:0]
  assign out = in0 | in1;
          /* or2 */
endmodule
endcelldefine
```

Synthesis Timing

Estimated achievable cycle time = Target cycle time - Timing slack

- A **positive** slack value implies that the circuit is estimated to perform at a higher clock rate than the target clock rate (1/*TargetCycleTime*)
- A **negative** slack value implies that the circuit is estimated to be unable to achieve the target clock frequency

Synthesis Circuit Area

• abc.area

```
Report : area
Design : abc
Version: V-2004.06-SP2
Date : Thu Feb 3 15:56:49 2005
*********
Library(s) Used:
   vtvtlib25 (File: /afs/ece/classes/Html/Winter04/eec281/lib/vtvtlib25.db)
Number of ports:
                             31
Number of nets:
                             30
Number of cells:
                             10
Number of references:
                              1
Combinational area:
                        699.840027
Noncombinational area:
                           0.000000
                          undefined (No wire load specified)
Net Interconnect area:
Total cell area:
                        699.840027
Total area:
                         undefined
```

Synthesis Gate Netlist

• abc.vg

```
module prac (in0, in1, out, clk);
 input [9:0] in0;
 input [9:0] in1;
 output [9:0] out;
 input clk;
 or2 2 U1 ( .ip1(in0[9]), .ip2(in1[9]), .op(out[9]) );
 or2 2 U2 ( .ip1(in0[8]), .ip2(in1[8]), .op(out[8]) );
 or2 2 U3 ( .ip1(in0[7]), .ip2(in1[7]), .op(out[7]) );
 or2 2 U4 ( .ip1(in0[6]), .ip2(in1[6]), .op(out[6]) );
 or2 2 U5 ( .ip1(in0[5]), .ip2(in1[5]), .op(out[5]) );
 or2 2 U6 ( .ip1(in0[4]), .ip2(in1[4]), .op(out[4]) );
 or2 2 U7 ( .ip1(in0[3]), .ip2(in1[3]), .op(out[3]) );
 or2 2 U8 ( .ip1(in0[2]), .ip2(in1[2]), .op(out[2]) );
 or2 2 U9 ( .ip1(in0[1]), .ip2(in1[1]), .op(out[1]) );
 or2 2 U10 ( .ip1(in0[0]), .ip2(in1[0]), .op(out[0]) );
endmodule
```

Synthesis, Other Output Files

- abc.cell
 - All cells used
 - Area per cell
- abc.logv
 - General log file for simulations
 - Skip reading it for errors and warnings at your peril!
- abc.logs
 - General log file for synthesis
 - Skip reading it for errors and warnings at your peril!

Reported Circuit Power

- Don't trust power numbers
- Don't trust any uncalibrated CAD tool anyway
- Power *comparisons* are likely useful to estimate the value or cost of design modifications, however
- The greatest sources of inaccuracies come from:
 - Interconnect (wires) dissipates a majority of the power in almost any design in a modern CMOS technology
 - The synthesis tool may or may not even have an equation to estimate wire capacitance (and by $E = CV^2$, a way to estimate energy per operation)
 - Even if it tries to estimate wire capacitance, it will surely be wrong! The only way to know it accurately is to do the actual cell placement and wire routing ("place & route") of the design

Startpoint: r_in31a_reg[0] (rising edge-triggered flip-flop clocked by clk) Synthesis Timing Endpoint: out32 reg[31] (rising edge-triggered flip-flop clocked by clk) Path Group: clk Path Type: max Example II Des/Clust/Port Wire Load Model Library 5K hvratio 1 1 NangateOpenCellLibrary Path 0.00 clock clk (rise edge) clock network delay (ideal) 0.00 0.00 r_in31a_reg[0](CK)(DFF_X1) 0.00 0.00 r r_in31a_reg[0](Q)(DFF_X1) 0.08 f U1/ZN (AND2 X1) 0.04 0.13 f U1 1/CO (FA X1) 0.09 0.22 f clock U1_2/CO (FA_X1) 0.09 0.31 f U1_3/CO (FA_X1) 0.40 f 0.09 U1 4/CO (FA X1) 0.09 0.50 f two timing paths U1_5/CO (FA_X1) 0.09 0.59 f U1_6/CO (FA_X1) 0.09 0.68 f U1 7/CO (FA X1) 0.09 0.78 f U1_8/CO (FA_X1) 0.09 0.87 f U1 9/CO (FA X1) 0.09 0.96 f U1_10/CO (FA_X1) 0.09 1.06 f U1 11/CO (FA X1) 0.09 1.15 f U1_12/CO (FA_X1) 0.09 1.33 f U1 13/CO (FA X1) U1 14/CO (FA X1) U1 15/CO (FA X1) 0.09 1.52 f U1 16/CO (FA X1) 0.09 1.61 f U1_17/CO (FA_X1) 0.09 1.71 f U1 18/CO (FA X1) 0.09 1.80 f U1 19/CO (FA X1) 1.89 f U1 20/CO (FA X1) 0.09 1.99 f U1 21/CO (FA X1) 0.09 2.08 f U1_22/CO (FA_X1) 0.09 2.17 f U1 23/CO (FA X1) 0.09 2.27 f U1 24/CO (FA X1) 0.09 2.36 f U1 25/CO (FA X1) 0.09 2.45 f U1 26/CO (FA X1) 0.09 2.54 f U1_27/CO (FA_X1) 0.09 2.64 f U1_28/CO (FA_X1) 2.73 f 0 09 U1 29/CO (FA X1) 2.82 f 2.92 f U1 30/CO (FA X1) 0.09 U1 31/S (FA X1) 0.13 3.05 r out32 reg[31]/D (DFF X1) 0.01 3.06 r data arrival time 3.06 clock clk (rise edge) 4.00 4.00 clock network delay (ideal) 0.00 clock uncertainty cycle time = 4 nsec -0.20 3.80 out32 reg[31]/CK (DFF X1) 0.00 3.80 r library setup time -0.03 clock skew = 200 psec data required time 3.77 3.77 data required time data arrival time slack (MET) 0.71