
SIGN EXTENSION

B. Baas
131

Sign Extension

• Needed for 2’s complement addition

• Consider case of adding two numbers of different
widths

1 0 1 1 -5

0 1 0 0 1 0 +18

0 1 1 1 0 1 +29!

B. Baas
132

Sign Extension

• Rule #1: 2’s complement input and output operands
must be the same word-width because of implied
zeros

0 0 1 0 1 1 -5

0 1 0 0 1 0 +18

0 1 1 1 0 1 +29!

B. Baas
133

Sign Extension

• Rule #2: Despite a fundamental change to the
number’s definition, the value of a 2’s complement
number will never change due to any amount of sign
extension—regardless of whether the value is positive
or negative

1 0 1 1 -5 = -8 + 2 + 1

1 1 0 1 1 -5 = -16 + 8 + 2 + 1

1 1 1 0 1 1 -5 = -32 + 16 + 8 + 2 + 1

B. Baas
134

Sign Extension

• Procedure:
1) Calculate the necessary minimum width of the sum so that it

contains all input possibilities

• It’s up to you to make sure the output range is sufficient

2) Extend the inputs’ sign bits to the width of the answer

3) Add as usual

4) Ignore bits that ripple to the left of the answer’s MSB

1 1 1 1 0 1 1 -5 [-8,+7] 4-bit

0 0 1 0 0 1 0 +18 [-32,+31] 6-bit

--------------------- ----------------

x 0 0 0 1 1 0 1 +13  [-40,+38]

Choose 7-bit [-64,+63]

B. Baas
135

Sign Extension

• Ignore carry bits
– Do not spend any hardware calculating any bits to the left of

the answer’s MSB

1 1 1 0 1 1 -5

1 1 0 0 1 0 -14

x 1 0 1 1 0 1 -19 

ignore

all bits to

the left of

the MSB

B. Baas
136

Sign Extension In Verilog

• Adding signed variables in verilog requires one of two
methods:
– Using signed variables: always works in verilog simulators but

in rare cases these variables do not work as expected with
some CAD tools

– Declare all variables normally as regs and wires and perform
sign extension manually. This method can be tedious but will
always alwayswork as expected.

B. Baas
137

Sign Extension In Verilog

• These
cases use
no sign
extension
at all

• Two cases
work
correctly,
one does
not

reg [3:0] m, n;

reg [4:0] sum;

initial begin

m = 4'b0000;

n = 4'b0000;

sum = m + n;

#10;

$write("m = %b, n = %b, sum = %b\n", m, n, sum);

m = 4'b1111;

n = 4'b1111;

sum = m + n;

#10;

$write("m = %b, n = %b, sum = %b\n", m, n, sum);

m = 4'b1111;

n = 4'b0000;

sum = m + n;

#10;

$write("m = %b, n = %b, sum = %b # ERROR: -1 + 0 = +15\n", m, n, sum);

end

m = 0000, n = 0000, sum = 00000

m = 1111, n = 1111, sum = 11110 # Lucky!

m = 1111, n = 0000, sum = 01111 # ERROR: -1 + 0 = +15

B. Baas
138

Sign Extension In Verilog

• Writing the
sign extension
manually is
the most
robust method

• Both inputs
are sign
extended to
the same
width as the
sum—five bits
in this case

reg [3:0] m, n;

reg [4:0] sum;

initial begin

m = 4'b1111;

n = 4'b0000;

sum = {m[3],m} + {n[3],n};

#10;

$write("m = %b, n = %b, sum = %b # OK!\n", m, n, sum);

end

m = 1111, n = 0000, sum = 11111 # OK!

