
SATURATION
&

COMPRESSION

281

© B. Baas

Saturation (or Clipping)

• Eliminates MSB bits

• It is common to saturate a signal after an operation which will or
may cause the magnitude of a signal to increase (e.g., addition,
subtraction, multiplication, (almost any operation), etc.)

Original waveform Saturated/clipped waveform

© B. Baas

Saturation (or Clipping)

• Saturation is a fundamental method to reduce the size of a word,
such as after arithmetic operations

– For example to maintain the word width for memory storage

• When saturated, bits are removed from the MSB end of the input word

+ sat

n n+1

n

n

Mem

n-bit

words

XXXXXXXX

 YYYYY

© B. Baas

Saturation (or Clipping)

• Saturation is actually a 2-step process:

1. Saturate the input to a maximum SAT_HI value and to a minimum SAT_LO

value

2. While it makes a lot of sense to choose SAT_HI and SAT_LO such that there are

redundant MSB bits that can be dropped (shorten the word), this need not

always be the case. When the saturation operation creates redundant and

therefore unnecessary MSB bits, they should be dropped.

• It is often efficient to perform both steps simultaneously

• Ex: Output is saturated to a reduced-word size

– input 4-bit 2’s complement Range is [–8, +7]

– output 3-bit 2’s complement Range is [–4, +3]

• Ex: Output word size is not reducible

– input 4-bit 2’s complement Range is [–8, +7]

– output saturated to [–5, +5] Requires 4 bits in the output word, so no word

 width reduction is possible

% Example saturated/clipped waveform

% 2009/02/03 Written

SatHi = 1.0;

SatLo = -1.0;

stepsize = 0.01;

a = 0 : stepsize : 5;

index = (a + stepsize) * (1/stepsize); % matlab indexes start at 1 :-(

index = round(index); % clear out VERY small offsets

b = 2.9 * sin(a*3) ./ (a+1); % constants chosen to look nice

% plot original waveform

figure(1);clf;

plot(a,b);

grid on;

axis([0 5 -2 +2]);

title('Original waveform');

%print -dtiff 1.tiff % 75 KB

print -dpng 1.png % 16 KB, both look equally sharp

% saturate/clip original waveform

for l = index,

 if b(l) > SatHi

 c(l) = SatHi;

 elseif b(l) < SatLo

 c(l) = SatLo;

 else

 c(l) = b(l);

 end

end

% plot saturated waveform

figure(2);clf;

plot(a,c);

grid on;

axis([0 5 -2 +2]);

title('Waveform saturated/clipped at \pm 1');

%print -dtiff 2.tiff % 75 KB

print -dpng 2.png % 16 KB, both look equally sharp

Saturation
(or Clipping)

• Matlab code that
produced
previous example
waveforms

• Copy, paste, and
try it!

© B. Baas

© B. Baas

Saturation (Clipping)

• A saturator checks for 3 possibilities:
– in > SAT_HI or in ≥ SAT_HI

– in < SAT_LO or in ≤ SAT_LO

– else pass through

• Think of a saturator as a three-input mux

SAT_HI

outin
SAT_LO

© B. Baas

Saturation (Clipping)

• Example:

– 4-bit input

– 3-bit output after saturation

• Both 0011 and 1100 could be either the
“saturation” selection or the
“pass through” selection and the output
will be the same (correct).

0111 SAT_HI = 011

0110 SAT_HI = 011

0101 SAT_HI = 011

0100 SAT_HI = 011

0011 either sat or pass

0010 in

0001 in

0000 in

1111 in

1110 in

1101 in

1100 either sat or pass

1011 SAT_LO = 100

1010 SAT_LO = 100

1001 SAT_LO = 100

1000 SAT_LO = 100

© B. Baas

Saturation (Clipping)

• If 0011 is pass through and 1100 is pass
through, then the hardware can just
look for when the MSB and MSB–1 bits
are different.

• When the two bits are different, the
MSB can not be simply dropped—the
output must be saturated.

• Example verilog to saturate 1 bit:
– if (in[MSB:MSB-1] == 2’b01)

 out = SAT_HI;

else if (in[MSB:MSB-1] == 2’b10)

 out = SAT_LO;

else

 out = in[MSB-1:0];

0111 SAT_HI = 011

0110 SAT_HI = 011

0101 SAT_HI = 011

0100 SAT_HI = 011

0011 either sat or pass

0010 in

0001 in

0000 in

1111 in

1110 in

1101 in

1100 either sat or pass

1011 SAT_LO = 100

1010 SAT_LO = 100

1001 SAT_LO = 100

1000 SAT_LO = 100

Example: 4-bit
input, ready for
truncation to a
3-bit output
after saturation

© B. Baas

Multi-Bit Saturation (Clipping)

• The method to saturate more than one bit is similar

• To saturate S bits, look for when the S+1 MSB bits are
not all the same value

• This make intuitive sense—S bits can not be removed
unless the S+1 MSB bits are all identical

• Example verilog to saturate 2 MSB bits:
– if (in[MSB:MSB-2] == 3’b000 || in[MSB:MSB-2] == 3’b111)

 out = in[MSB-2:0]; // pass through w/o 2 MSB bits

else if (in[MSB] == 1’b0) // positive

 out = SAT_HI;

else // negative

 out = SAT_LO;

© B. Baas

Saturation Bias Effects

• Saturation with simple hardware
will usually clip to:
 (+) 01111…111 +1023 +3

 (-) 10000…000 -1024 -4

• But this treats positive saturated
samples differently than negative
saturated samples

• In effect, this creates a bias in the saturated output samples

• This may cause problems
– Circuits sensitive to a DC bias; e.g., a signal path containing an

accumulator or some RF circuits

– Effect is worse for signals that saturate frequently

– Effect is worse for outputs with narrow word widths

Examples
11-bit 3-bit

© B. Baas

Saturation Bias Effects

• In cases when the non-symmetric
rounding is not acceptable, clipping
must be done in a symmetric manner

• That is, SAT_LO = –SAT_HI

 (+) 01111…111 +1023 +3

 (-) 10000…001 -1023 -3

• The SAT_LO comparison is now more complex: the saturation
detection circuit in the critical path must now look at all bits in the
input word

• The case of in == (SAT_LO – 1) must be detected

• Example: 6-bit input saturated to a 5-bit output with values ±15
– Requires special detection of in == -16 (in which case out = –15)

– Can be detected as the special saturation case when
in == 110000 (–16 alone) or in == 11000x (–16 and –15)

Examples
11-bit 3-bit

© B. Baas

Compression: Gentle Saturation

• In some cases, the harsh corners of a saturated
waveform produce undesirable characteristics

• A solution is to more gently saturate using a transfer
function with a rounded shape that allows the signal
to gently enter the saturation region

• Commonly called “Compression”

• Negative aspects:
– The signal is distorted at a smaller magnitude

– The hardware is much more complex

– The smoothing function likely requires a lookup table

© B. Baas

Compression

• This is the transfer
function of a
compression function
using sin() for the
rounded sections and
constant saturated
values for large
negative and large
positive input values

• See the next slide for
the matlab

© B. Baas

Compression
% compressor.m

%

% This module compresses the values [-64:63] (which are the same values

% representable by a 7-bit 2's complement number) into an output range

% of [-31:+31] which almost fills the range of a 6-bit 2's complement

% number.

%

% Outputs are compressed according to a piecewise function comprised of

% partial sin waveforms and saturated regions. They are not quantized or

% rounded in any other way.

%

% 2015/03/05 Cleaned up and documented better

PrintOn = 1; % set to 1 to print tiff and png of figure(1)

XVals = [-64:63]; % range of a 7-bit 2's complement number

XOffset = (1 - XVals(1)); % offset needed for array index to begin at 1

Xsat = 48; % +/- x value where full saturation begins

SatVal = 31; % both neg and pos. max +/- range of 6-bit 2's compl

for l = XVals,

 if l < -Xsat

 b(l+XOffset) = -SatVal;

 elseif l < 0

 b(l+XOffset) = SatVal * sin((l/Xsat)*(pi/2));

 elseif l < Xsat

 b(l+XOffset) = SatVal * sin((l/Xsat)*(pi/2));

 else

 b(l+XOffset) = +SatVal;

 end

end

figure(1);clf;

plot(XVals, b);

hold on;

grid on;

%plot([-24:24], [-24:24]*(pi/2), 'r'); % not slope=+1 line

xlabel('Input value');

ylabel('Output value');

title('Compressor function');

%if (PrintOn) print -dtiff compressor.tiff; end

if (PrintOn) print -dpng compressor.png; end

• This is the
matlab code
that generates
the plots on
the previous
slide

• Copy, paste,
and try it
yourself!

	Slide 232: SATURATION & COMPRESSION
	Slide 233: Saturation (or Clipping)
	Slide 234: Saturation (or Clipping)
	Slide 235: Saturation (or Clipping)
	Slide 236: Saturation (or Clipping)
	Slide 237: Saturation (Clipping)
	Slide 238: Saturation (Clipping)
	Slide 239: Saturation (Clipping)
	Slide 240: Multi-Bit Saturation (Clipping)
	Slide 241: Saturation Bias Effects
	Slide 242: Saturation Bias Effects
	Slide 243: Compression: Gentle Saturation
	Slide 244: Compression
	Slide 245: Compression

