ROUNDING



Rounding

Rounding is a fundamental method to reduce the size of a word,
such as after arithmetic operations

— For example to maintain the word width for memory storage
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Rounding

* Another example: if we multiply two 5-bit words, the
product will have 10 bits
XXXXX X VYYVYVV = ZZZZZZZZZ2Z
and we likely can not handle or do not want or need
all that precision

* More issues are present with signed data

e Issues vary for different formats:
— unsigned
— 2’s complement
— sign magnitude
— etc.



Rounding

* Rounding modes in IEEE 754 are much more
complex than what is commonly needed in digital
signal processing systems

e There are four fundamental rounding modes whose
matlab function names are:

1) round(-): towards nearest integer
* Generally the best rounding algorithm
2) fix(-): truncates towards zero
3) tloor(-): rounds towards negative infinity
4) ceil(-): rounds towards positive infinity
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2) matlab fix()
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3) matlab floor()
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4) matlab ceil()
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Hardware Rounding:
A) Truncation

A. The easiest hardware method is truncation

XXX XXXXX
XXX XX———

Simply neglect the truncated bits and remove all hardware which
calculates only those bits
Maximum rounding error ~1 post-rounded LSB
Sign magnitude format numbers (obviously the magnitude portion)
e DPositive and negative numbers both truncate towards zero
* Same as matlab fix ()
2’s complement format numbers
e All numbers truncate towards negative infinity
* Same as matlab floor ()
Unsigned format numbers

e All numbers truncate towards zero (negative infinity)
* Same as matlab fix (¢) and floor ()



Hardware Rounding:
B) Add 2 LSB and Truncate

B. Rounding Algorithm #5. Add %2 LSB (that is, one
half of the LSB of the output) and then truncate
— This does not correspond to any of the matlab rounding
functions for all binary formats
— Maximum rounding error Y2 of the post-rounded LSB
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Hardware Rounding:
B) Add 2 LSB and Truncate

* Itis often not difficult to find a place to add the extra
“1” in a complex datapath if you plan ahead

keep these bits
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Hardware Rounding:
B) Add 2 LSB and Truncate

* Itis often not difficult to find a place to add the extra
“1” in a complex datapath if you plan ahead
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Hardware Rounding:
B) Add 2 LSB and Truncate

* The exact behavior depends on the number format
being used:
— Unsigned
¢ Unbiased rounding, same as round()
— Sign magnitude, magnitude portion
* Unbiased rounding, same as round()

— 2’s complement

* Both positive and negative xxxx.1000 cases round towards
positive infinity as explained previously
* The behavior requires a little more analysis



B) Add V2 LSB and Truncate
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B) Add V2 LSB and Truncate
2’s Complement
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B) Add 2 LSB and Truncate
2’s Complement

* There are three key cases to consider for 2’s complement:
(examples assume output is rounded to an integer)
a. When the input is of the form xxxxx.100 (base 2) in the

example above, and positive

* Rounding is towards positive infinity which is the same as round ()
b. When the input is of the form xxxxx.100 (base 2) in the

example above, and negative

* Rounding is towards positive infinity which is NOT the same as
round (e°)

c. Otherwise
e It performs the same as matlab round ()



B) Add 2 LSB and Truncate

2’s Complement

* The biased rounding in the xxx.1000 cases when
using 2’s complement may be fine in many cases,

especially when many bits are being rounded off, but if

only a few bits are being rounded off, the case that

differs from round() occurs more often.

° Example: xxxxxx .x rounded to YYVVYVY

Pre-rounded value Rounding action Net effect
(+) xxxxxx.0 No change in value Same as round()
(+) xxxxxx.l Rounds to integer +0.5 Same as round()
(=) xxxxxx.0 No change in value Same as round()
(=) xxxxxx.l Rounds to integer +0.5 Same as round() +1




e Example: 64 positive values of xxxxxx.xxxxxx rounded

to yyyyyy

B) Add 2 LSB and Truncate

2’s Complement

Pre-rounded value

Rounding action

Net effect
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B) Add 2 LSB and Truncate

2’s Complement

° Example: 64 negative values of xxxxxx.xxxxxx

rounded to yyyyyy

Pre-rounded value

Rounding action

Net effect
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Same as round|()
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Hardware Rounding:
C) Unbiased for 2's Complement

C. Unbiased Rounding: the same as matlab round()

— For cases where a “DC” bias is unacceptable, positive and
negative numbers must be rounded differently with
2’s complement

— Although logically simple, implementing an unbiased
rounding with 2’s complement numbers can increase the
critical path delay significantly

— The calculation is not so complex if the only operation is
rounding, but this is uncommon. Things get interesting in the
common case when rounding is the last step in a series of
calculations.
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Hardware Rounding:
C) Unbiased for 2's Complement

— Here is a straightforward algorithm (1. calc w/o 1/2 LSB, 2. check
if the result is the special case, 3. add 1/2 LSB and recalculate if
the result is not the special case)

1) Remove the normal %2 LSB rounding bit

2) Keep the output when the result(!) is:
i. Negative and # Unrounded result is
ii. Of the form xxxxx.1000 # —xxx.5000 (base 10)

« Equivalently, we could also not add the Y2 LSB when the
result is in the range: xxxxx.0000 to xxxxx.1000

3) Otherwise, add the %2 LSB rounding bit back into the input and
recalculate the output

4) Truncate as with method (B) :
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Hardware Rounding:
C) Unbiased for 2's Complement

— Here is a second basic algorithm
1) Add the normal ¥2 LSB rounding bit
2) Keep the output when the result(!) is not:
i. (Negative and # A negative integer
ii. of the form xxxxx.0000)
iii. Or zero # It input was —0.5

3) Otherwise, remove the ¥2 LSB rounding from the input and
recalculate the output

4) Truncate as with method (B)
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Hardware Rounding:
C) Unbiased for 2's Complement

— A third option is to calculate the result two times in

parallel:

1) with Y2 LSB added in

2) without V2 LSB added in
The correct answer is then selected with a mux
when it is known which result is correct using one
of the previously-described algorithms or another
e This is faster than the other two approaches however it

requires about twice as much hardware which could be
unacceptably expensive in area and energy dissipation



rounding.m

Look at various rounding modes

% 2005/02/03 Written
% 2018/03/05 Updated colors and a number of details. Added PrintOn on line 40
% to print plots in .tif files.
n %

The only reason to declare the main body as a function is because matlab
chokes if a function is declared inside a non-function.
unction rounding

== Definitions
B = -2.5 : 0.01 2,58 % "continuous" samples
Xpos = 0 : 0.01 2.5; % "continuous" non-negative samples
xcirch = -2.5:1 2,58 % circles at x.500 points
xcircint = -2 : 1 8 28 % circles at x.000 points
xcircpos = 0.5 :1 g 2,59 % circles at x.500 points (positive)
) CO aste and tr axis_limits = [-2.5 2.5 -2.5 2.5]; % for axis limits on plots
py, p J y ticks = [-2 -1 01 2]; % points on axis to draw lines
. e Main
lt Out plot _one(l, x, round(x), xcirc5, round (xcirc5),
axis_limits, ticks, 'round(\cdot)');

plot_one (2, x, fix(x), xcircint, fix(xcircint),
axis_ limits, ticks, 'fix(\cdot)');
plot_one (3, x, floor(x), xcircint, floor(xcircint),
axis_ limits, ticks, 'floor(\cdot)');
plot _one (4, x, ceil(x), xcircint, ceil (xcircint),
axis limits, ticks, 'ceil(\cdot)');
plot_one (5, x, floor(x+0.5), xcirc5, floor(xcirc5+0.5),
axis limits, ticks, 'floor(x+0.5)");
plot_one (6, xpos, floor(xpos+0.5), xcircpos, floor (xcircpos+0.5),
axis_ limits, ticks, 'floor (x+0.5), positive inputs only');
return;
= Function to plot one figure
function plot one(fignum, x, y, xi, yi, axis limits, ticks, nametitle)

PrintOn = 0; % select whether to print plots to .tif and .eps files

figure (fignum); clf
% plot diagonal dashed line
plot([axis limits (1) axis limits(4)], [axis_limits(1l) axis_limits(4)],

'--g', 'linewidth', 1.5);

hold on; % don't erase prior plots
% plot black vertical y-axis line
plot ([0 0], [axis limits(l) axis limits(4)], '-k', 'linewidth', 3);

o

% print horizontal lines
plot(x, y, '.b");

% print large circles
plot(xi, yi, '.r', 'markersize', 30, 'linewidth', 2);

% touch up the plot
axis(axis_limits);

set (gca, 'XTick', ticks);

set (gca, 'YTick', ticks);

grid on;

grid minor;

xlabel ('Input number') ;

ylabel ('Post-rounded number') ;
title (nametitle);

% print out .eps and .tiff figures

filename = strcat('rounding', num2str (fignum)) ;
if (PrintOn)

Sprint ('-deps', filename) ;

print ('-dtiff', filename);

end

return;
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