ROUNDING



Rounding

Rounding is a fundamental method to reduce the size of a word,
such as after arithmetic operations

— For example to maintain the word width for memory storage

n n+1 n
Mem N ‘ » t  ——
+ 7 Sa
n-bit
words <




Rounding

* Another example: if we multiply two 5-bit words, the
product will have 10 bits
XXXXX X VYYVYVV = ZZZZZZZZZ2Z
and we likely can not handle or do not want or need
all that precision

* More issues are present with signed data

e Issues vary for different formats:
— unsigned
— 2’s complement
— sign magnitude
— etc.



Rounding

* Rounding modes in IEEE 754 are much more
complex than what is commonly needed in digital
signal processing systems

e There are four fundamental rounding modes whose
matlab function names are:

1) round(-): towards nearest integer
* Generally the best rounding algorithm
2) fix(-): truncates towards zero
3) tloor(-): rounds towards negative infinity
4) ceil(-): rounds towards positive infinity



1) matlab round()

e (Often the best

round(-)

general-purpose
rounding mode

e “Unbiased”
rounding

* Symmetric
rounding for
positive and A S 2
negative numbers

e Max error V2 LSB 2 —r—e

Post-rounded number
o

Input number



2) matlab fix()

Truncates toward
zZero

Numerical
performance is poor

Symmetric rounding
for positive and
negative numbers
Very simple
hardware for the
magnitude of sign
magnitude (simple
truncation)

B XXXXXX 1In
xxxxXx—— out

Max error 1 LSB

Post-rounded number

=

o

|
[

fix(-)

0
Input number




3) matlab floor()

Numbers rounded
down towards
—infinity

Numerical
performance is poor
Very simple
hardware for 2’s
complement (simple
truncation)

B xXXXXX 1IN
XxXxXxX—-— out

Max error 1 LSB

Post-rounded number

=

o

|
[

floor(-)

Input number




Numbers
rounded up
toward +infinity

Numerical
performance is
poor

Max error 1 LSB

4) matlab ceil()

Post-rounded number

=

1
[

ceil(-)

0
Input number




Hardware Rounding:
A) Truncation

A. The easiest hardware method is truncation

XXX XXXXX
XXX XX———

Simply neglect the truncated bits and remove all hardware which
calculates only those bits
Maximum rounding error ~1 post-rounded LSB
Sign magnitude format numbers (obviously the magnitude portion)
e DPositive and negative numbers both truncate towards zero
* Same as matlab fix ()
2’s complement format numbers
e All numbers truncate towards negative infinity
* Same as matlab floor ()
Unsigned format numbers

e All numbers truncate towards zero (negative infinity)
* Same as matlab fix (¢) and floor ()



Hardware Rounding:
B) Add 2 LSB and Truncate

B. Rounding Algorithm #5. Add %2 LSB (that is, one
half of the LSB of the output) and then truncate
— This does not correspond to any of the matlab rounding
functions for all binary formats
— Maximum rounding error Y2 of the post-rounded LSB

1
+ xxxxx.xxx Input
vyyyy.yxx intermediate sum
yyyyy.—--— rounded output

!

rounding bit added here

the
post-rounded
LSB position



Hardware Rounding:
B) Add 2 LSB and Truncate

* Itis often not difficult to find a place to add the extra
“1” in a complex datapath if you plan ahead

keep these bits

ojo 6 6 6 6 o O
ojo 6 6 6 0o O
olo o 0 0 o “1” rounding bit
ole o 0o o has a weight of
oloe o o Y5 of the post-
ofe :/ rounded LSB
ol
of1
truncate these bits after adding everything (to get

L the correct
post-rounded LSB position carry bits)



Hardware Rounding:
B) Add 2 LSB and Truncate

* Itis often not difficult to find a place to add the extra
“1” in a complex datapath if you plan ahead

e 6 06 0 o

e 6 o o

oo o “1” rounding bit
oo has a weight of
° Y5 of the post-
14— | roundedLSB

keep these bits

truncate these bits after adding everything (to get
the correct

L post-rounded LSB position carry bits)



Hardware Rounding:
B) Add 2 LSB and Truncate

* The exact behavior depends on the number format
being used:
— Unsigned
¢ Unbiased rounding, same as round()
— Sign magnitude, magnitude portion
* Unbiased rounding, same as round()

— 2’s complement

* Both positive and negative xxxx.1000 cases round towards
positive infinity as explained previously
* The behavior requires a little more analysis



B) Add V2 LSB and Truncate
Unsigned, Sign Magnitude

matlab floor (x+1/2) | floor(x+0.5), positive inputs only | .
matlab f£ix (x+1/2) |
Both positive and ,/'/
negative xxxx.1000 1 e

cases round away
from zero just like
round|()

Functions the same as
matlab round() which 1} ot
is the best of our four L
matlab rounding ol .
functions R

-2 - 0 1 2
Max error ¥~ L.SB L put number

Post-rounded number
o




B) Add V2 LSB and Truncate
2’s Complement

matlab floor (x+1/2) floor(x+0.5)
The numerical S
. 2 - O
performance is often ot
sufficient L
1 5 | 7

+ xxxxxx = o

YYYYXX g0 T

VYYy==- :

o e

Biased rounding for 1 —
2’s complement 52"
Max error V2 LSB - i

Input number



B) Add 2 LSB and Truncate
2’s Complement

* There are three key cases to consider for 2’s complement:
(examples assume output is rounded to an integer)
a. When the input is of the form xxxxx.100 (base 2) in the

example above, and positive

* Rounding is towards positive infinity which is the same as round ()
b. When the input is of the form xxxxx.100 (base 2) in the

example above, and negative

* Rounding is towards positive infinity which is NOT the same as
round (e°)

c. Otherwise
e It performs the same as matlab round ()



B) Add 2 LSB and Truncate

2’s Complement

* The biased rounding in the xxx.1000 cases when
using 2’s complement may be fine in many cases,

especially when many bits are being rounded off, but if

only a few bits are being rounded off, the case that

differs from round() occurs more often.

° Example: xxxxxx .x rounded to YYVVYVY

Pre-rounded value Rounding action Net effect
(+) xxxxxx.0 No change in value Same as round()
(+) xxxxxx.l Rounds to integer +0.5 Same as round()
(=) xxxxxx.0 No change in value Same as round()
(=) xxxxxx.l Rounds to integer +0.5 Same as round() +1




e Example: 64 positive values of xxxxxx.xxxxxx rounded

to yyyyyy

B) Add 2 LSB and Truncate

2’s Complement

Pre-rounded value

Rounding action

Net effect

XXXXXX.

XXXXXX

XXXXXX.

XXXXXX.

XXXXXX.

XXXXXX.

XXXXXX.

000000

.000001

000010

100000

111101

111110
111111

No change in value
Rounds down to integer

Rounds down to integer

Rounds up to integer

Rounds up to integer

Rounds up to integer

Rounds up to integer

Same as round|()
Same as round|()

Same as round|()

Same as round|()

Same as round()

Same as round()

Same as round|()




B) Add 2 LSB and Truncate

2’s Complement

° Example: 64 negative values of xxxxxx.xxxxxx

rounded to yyyyyy

Pre-rounded value

Rounding action

Net effect

XXXXXX.

XX XXXX

XXXXXX.

XXXXXX.

XXXXXX.

XXXXXX.

XXXXXX.

000000

.000001

000010

100000

111101

111110
111111

No change in value
Rounds down to integer

Rounds down to integer

Rounds up to integer

Rounds up to integer

Rounds up to integer

Rounds up to integer

Same as round|()
Same as round|()

Same as round|()

Same as round() +1

Same as round()

Same as round()

Same as round|()




Hardware Rounding:
C) Unbiased for 2's Complement

C. Unbiased Rounding: the same as matlab round()

— For cases where a “DC” bias is unacceptable, positive and
negative numbers must be rounded differently with
2’s complement

— Although logically simple, implementing an unbiased
rounding with 2’s complement numbers can increase the
critical path delay significantly

— The calculation is not so complex if the only operation is
rounding, but this is uncommon. Things get interesting in the
common case when rounding is the last step in a series of
calculations.

nnnnnnnnnnn



Hardware Rounding:
C) Unbiased for 2's Complement

— Here is a straightforward algorithm (1. calc w/o 1/2 LSB, 2. check
if the result is the special case, 3. add 1/2 LSB and recalculate if
the result is not the special case)

1) Remove the normal %2 LSB rounding bit

2) Keep the output when the result(!) is:
i. Negative and # Unrounded result is
ii. Of the form xxxxx.1000 # —xxx.5000 (base 10)

« Equivalently, we could also not add the Y2 LSB when the
result is in the range: xxxxx.0000 to xxxxx.1000

3) Otherwise, add the %2 LSB rounding bit back into the input and
recalculate the output

4) Truncate as with method (B) :

P
S —
v

0
+ XXX .XXXXX :
YYY . YYYXX e
YYY.-YY=—-

nnnnnnnnnnn



Hardware Rounding:
C) Unbiased for 2's Complement

— Here is a second basic algorithm
1) Add the normal ¥2 LSB rounding bit
2) Keep the output when the result(!) is not:
i. (Negative and # A negative integer
ii. of the form xxxxx.0000)
iii. Or zero # It input was —0.5

3) Otherwise, remove the ¥2 LSB rounding from the input and
recalculate the output

4) Truncate as with method (B)

1
+ XXX .XXXXX

YYY - YYYXX ,
VYY-YY~ - o

nnnnnnnnnnn



Hardware Rounding:
C) Unbiased for 2's Complement

— A third option is to calculate the result two times in

parallel:

1) with Y2 LSB added in

2) without V2 LSB added in
The correct answer is then selected with a mux
when it is known which result is correct using one
of the previously-described algorithms or another
e This is faster than the other two approaches however it

requires about twice as much hardware which could be
unacceptably expensive in area and energy dissipation



rounding.m

Look at various rounding modes

% 2005/02/03 Written
% 2018/03/05 Updated colors and a number of details. Added PrintOn on line 40
% to print plots in .tif files.
n %

The only reason to declare the main body as a function is because matlab
chokes if a function is declared inside a non-function.
unction rounding

== Definitions
B = -2.5 : 0.01 2,58 % "continuous" samples
Xpos = 0 : 0.01 2.5; % "continuous" non-negative samples
xcirch = -2.5:1 2,58 % circles at x.500 points
xcircint = -2 : 1 8 28 % circles at x.000 points
xcircpos = 0.5 :1 g 2,59 % circles at x.500 points (positive)
) CO aste and tr axis_limits = [-2.5 2.5 -2.5 2.5]; % for axis limits on plots
py, p J y ticks = [-2 -1 01 2]; % points on axis to draw lines
. e Main
lt Out plot _one(l, x, round(x), xcirc5, round (xcirc5),
axis_limits, ticks, 'round(\cdot)');

plot_one (2, x, fix(x), xcircint, fix(xcircint),
axis_ limits, ticks, 'fix(\cdot)');
plot_one (3, x, floor(x), xcircint, floor(xcircint),
axis_ limits, ticks, 'floor(\cdot)');
plot _one (4, x, ceil(x), xcircint, ceil (xcircint),
axis limits, ticks, 'ceil(\cdot)');
plot_one (5, x, floor(x+0.5), xcirc5, floor(xcirc5+0.5),
axis limits, ticks, 'floor(x+0.5)");
plot_one (6, xpos, floor(xpos+0.5), xcircpos, floor (xcircpos+0.5),
axis_ limits, ticks, 'floor (x+0.5), positive inputs only');
return;
= Function to plot one figure
function plot one(fignum, x, y, xi, yi, axis limits, ticks, nametitle)

PrintOn = 0; % select whether to print plots to .tif and .eps files

figure (fignum); clf
% plot diagonal dashed line
plot([axis limits (1) axis limits(4)], [axis_limits(1l) axis_limits(4)],

'--g', 'linewidth', 1.5);

hold on; % don't erase prior plots
% plot black vertical y-axis line
plot ([0 0], [axis limits(l) axis limits(4)], '-k', 'linewidth', 3);

o

% print horizontal lines
plot(x, y, '.b");

% print large circles
plot(xi, yi, '.r', 'markersize', 30, 'linewidth', 2);

% touch up the plot
axis(axis_limits);

set (gca, 'XTick', ticks);

set (gca, 'YTick', ticks);

grid on;

grid minor;

xlabel ('Input number') ;

ylabel ('Post-rounded number') ;
title (nametitle);

% print out .eps and .tiff figures

filename = strcat('rounding', num2str (fignum)) ;
if (PrintOn)

Sprint ('-deps', filename) ;

print ('-dtiff', filename);

end

return;



	Slide 348: ROUNDING
	Slide 349: Rounding
	Slide 350: Rounding
	Slide 351: Rounding
	Slide 352: 1) matlab round()
	Slide 353: 2) matlab fix()
	Slide 354: 3) matlab floor()
	Slide 355: 4) matlab ceil()
	Slide 356: Hardware Rounding:  A) Truncation
	Slide 357: Hardware Rounding:  B) Add ½ LSB and Truncate
	Slide 358: Hardware Rounding:  B) Add ½ LSB and Truncate
	Slide 359: Hardware Rounding:  B) Add ½ LSB and Truncate
	Slide 360: Hardware Rounding:  B) Add ½ LSB and Truncate
	Slide 361: B) Add ½ LSB and Truncate Unsigned, Sign Magnitude
	Slide 362: B) Add ½ LSB and Truncate 2’s Complement
	Slide 363: B) Add ½ LSB and Truncate 2’s Complement
	Slide 364: B) Add ½ LSB and Truncate 2’s Complement
	Slide 365: B) Add ½ LSB and Truncate 2’s Complement
	Slide 366: B) Add ½ LSB and Truncate 2’s Complement
	Slide 367: Hardware Rounding:  C) Unbiased for 2’s Complement 
	Slide 368: Hardware Rounding:  C) Unbiased for 2’s Complement 
	Slide 369: Hardware Rounding:  C) Unbiased for 2’s Complement 
	Slide 370: Hardware Rounding:  C) Unbiased for 2’s Complement 
	Slide 371: matlab for previous plots

