
NYQUIST FILTERS

Generation of Nyquist Filters

• Use remez(•) in matlab but you must constrain the frequency points
and amplitudes in certain ways

– The frequency vector values must mirror each other in pairs around π/2

• For example: [0 0.2 0.4 0.6 0.8 1]

[0 0.11 0.34 0.66 0.89 1]

– The amplitude vector values must mirror each other in pairs around a
magnitude of 0.50

• For example: [1 1 0 0] % low-pass

[0 0.05 0.10 0.90 0.95 1] % high-pass

• Typically coefficients that should be
zero will be close but not exactly zero
when they are generated by remez(•)

– Round these to make them exactly zero

B. Baas 505

ππ
2

Nyquist Filter
Example

• Copy and paste
this program
into a *.m file
and experiment
yourself in
matlab!

B. Baas 506

% nyq.m

%

% 2015/03/04 Minor edits

% 2018/03/12 Added scaling of figure 2

% Set these

NumTaps = 21;

PrintOn = 1;

% Generate Nyquist filter coefficients

coeffs = remez(NumTaps-1, [0 0.45 0.55 1], [1 0.95 0.05 0]);

figure(1); clf;

stem(-10:10, coeffs);

axis ([-11 11 -0.15 0.55]);

title('Nyquist filter coefficients');

grid on;

if (PrintOn) print -dtiff 1.tiff; end

figure(2); clf;

freqz(coeffs);

title('Filter frequency response plotted by freqz(); Note -6dB at \pi/2');

subplot(2,1,1); % select the top magnitude plot

axis([0 1 -45 5]); % scale vertical axis more reasonably to see features

hold on;

plot(0.5, -6, 'ro');

if (PrintOn) print -dtiff 2.tiff; end

% Generate white-noise flat-spectrum signal

in = rand(1, 100000) - 0.5;

figure(3); clf;

psd(in);

axis([0 1 -18 -4]);

title('White-noise input signal to characterize filter; 100,000 samples');

if (PrintOn) print -dtiff 3.tiff; end

% Pass the white-noise signal through the filter

out = conv(coeffs, in);

figure(4); clf;

psd(out);

title('Filter frequency response plotted by psd(); 100,000 samples; note -6dB (-17dB) at \pi/2');

axis([0 1 -50 -5]); % scale vertical axis more reasonably to see features

hold on;

plot(0.5, -17, 'ro');

if (PrintOn) print -dtiff 4.tiff; end

B. Baas 507

Nyquist Filter Coefficients
Impulse Response

• 21-tap example

• It has significantly
reduced hardware
with almost half of
its coeffs == zero

– (N–1)/2 taps
equal to zero for
N = 4k+1

– (N–3)/2 taps
equal to zero for
N = 4k+3

B. Baas 508

Filter Example

• The filter’s
frequency
response plot
made by
freqz(•)

• Note these critical
points to make a
comparison later

– –6 dB at π/2
(1/2 magnitude)

– –20 dB at
0.68 π

B. Baas 509

The Second Less-Accurate Method
to Measure Filter Response

• “White noise” random
signals have a (nearly)
flat spectrum

• This example contains
100,000 samples

– More samples will
make the spectrum
flatter

• We will pass this
signal through our
filter and view the
output spectrum to
gauge the filter’s
frequency response

B. Baas 510

The Second Less-Accurate Method
to Measure Filter Response

• This is the spectrum
of the white-noise
signal after being
passed through the
filter

• Note approximate
values

– –6 dB at π/2

– –20 dB at
0.68 π

– It matches freqz()!

• Recall that this
method is best for
actual bit-accurate
HW designs

NYQUIST &
UPSAMPLING FILTERS

B. Baas 512

Nyquist Filters and Upsampled
Signals

• First recall standard approach
– Low-pass filter has cutoff frequency at π/2

upsamp 2 LPF

π 2ππ
2

π 2ππ
2

π 2ππ
2

B. Baas 513

Nyquist Filters and Upsampled
Signals

• Nyquist filters have almost half of their coefficients equal to zero

• Upsampled signals have every other sample equal to zero

• Lots of zeros an opportunity!

• There are two alignments of data and filter coefficients

1. The center tap of the filter aligns with a non-zero value in the
upsampled data stream

• The result is a trivial single multiply

• With clever scaling, the multiplier can be reduced to a
power-of-2 shift requiring no hardware whatsoever

2. The other alignment

• The result is a simplified filter with almost half the hardware
because (N-1)/2 of the FIR multiplications are zero times zero

• N delay registers are still needed however

Nyquist Filters and Upsampled
Signals

• The Nyquist filter can then be implemented very
efficiently by dividing the filter into two components
that compute the two alignments and reconstructing
the output with a 2:1 mux which interleaves samples
taken from each filter every other cycle

B. Baas 514

Filter I

Filter II

input filtered output

Nyquist Filters and Upsampled
Signals

• Another great benefit: the two filters are operating in the slower
pre-upsampled sampling frequency domain

• Upsampling is performed in the mux

B. Baas 515

Filter I

Ex: 0 tap

Filter II

Ex: 10-tap

input filtered output

2
Orig. Filter

Ex: 21-tap
input filtered output

sampling

frequency

fs

sampling

frequency

2 fs

2 fs

fs

fs

Of course the
filtered

output is
identical

when
calculated

using either
approach

Nyquist Filters and Upsampled
Signals

• Recall that for common static CMOS circuits,
Power = C V2 f

• In summary, the optimized merged upsampler/filter
using a Nyquist filter yields:
– Approximately half the total hardware

 C’ = C/2

– Filters operating at half the clock frequency

 f’ = f/2

– Only a 2:1 mux operates at the faster upsampled clock
frequency

– Power’ approximately 1/4 of the original power; probably a
little less due to relaxed timing requirements of the
simplified filter

B. Baas 516

