NYQUIST FILTERS
Generation of Nyquist Filters

• Use `remez(•)` in matlab but you must constrain the frequency points and amplitudes in certain ways
 – The **frequency vector** values must mirror each other in pairs around \(\pi/2 \)
 • For example:
 \[
 [0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1] \\
 [0 \ 0.11 \ 0.34 \ 0.66 \ 0.89 \ 1]
 \]
 – The **amplitude vector** values must mirror each other in pairs around a magnitude of 0.50
 • For example:
 \[
 [1 \ 1 \ 0 \ 0] \quad \% \text{ low-pass} \\
 [0 \ 0.05 \ 0.10 \ 0.90 \ 0.95 \ 1] \quad \% \text{ high-pass}
 \]

• Typically coefficients that should be zero will be close but not exactly zero when they are generated by `remez(•)`
 – Round these to make them exactly zero
% nyq.m
% 2015/03/04 Minor edits
% 2018/03/12 Added scaling of figure 2

% Set these
NumTaps = 21;
PrintOn = 1;

% Generate Nyquist filter coefficients
coeffs = remez(NumTaps-1, [0 0.45 0.55 1], [1 0.95 0.05 0]);

figure(1); clf;
stem(-10:10, coeffs);
axis([-11 11 -0.15 0.55]);
title('Nyquist filter coefficients');
grid on;
if (PrintOn) print -dtiff 1.tiff; end

figure(2); clf;
freqz(coeffs);
title('Filter frequency response plotted by freqz(); Note -6dB at \pi/2');
subplot(2,1,1); % select the top magnitude plot
axis([0 1 -45 5]); % scale vertical axis more reasonably to see features
hold on;
plot(0.5, -6, 'ro');
if (PrintOn) print -dtiff 2.tiff; end

% Generate white-noise flat-spectrum signal
in = rand(1, 100000) - 0.5;

figure(3); clf;
psd(in);
axis([0 1 -18 -4]);
title('White-noise input signal to characterize filter; 100,000 samples');
if (PrintOn) print -dtiff 3.tiff; end

% Pass the white-noise signal through the filter
out = conv(coeffs, in);

figure(4); clf;
psd(out);
title('Filter frequency response plotted by psd(); 100,000 samples; note -6dB (-17dB) at \pi/2');
axis([0 1 -50 -5]); % scale vertical axis more reasonably to see features
hold on;
plot(0.5, -17, 'ro');
if (PrintOn) print -dtiff 4.tiff; end
Nyquist Filter Coefficients
Impulse Response

- 21-tap example
- It has significantly reduced hardware with almost half of its coeffs == zero
 - \((N-1)/2\) taps equal to zero for \(N = 4k+1\)
 - \((N-3)/2\) taps equal to zero for \(N = 4k+3\)
Filter Example

- The filter’s frequency response plot made by `freqz(•)`
- Note these critical points to make a comparison later
 - -6 dB at $\pi/2$ (1/2 magnitude)
 - -20 dB at 0.68π
The Second Less-Accurate Method to Measure Filter Response

- “White noise” random signals have a (nearly) flat spectrum
- This example contains 100,000 samples
 - More samples will make the spectrum flatter
- We will pass this signal through our filter and view the output spectrum to gauge the filter’s frequency response
The Second Less-Accurate Method to Measure Filter Response

- This is the spectrum of the white-noise signal after being passed through the filter
- Note approximate values
 - -6 dB at $\pi/2$
 - -20 dB at 0.68π
 - It matches freqz()!
- Recall that this method is best for actual bit-accurate HW designs
NYQUIST & UPSAMPLING FILTERS
Nyquist Filters and Upsampled Signals

- First recall standard approach
 - Low-pass filter has cutoff frequency at $\pi/2$
Nyquist Filters and Upsampled Signals

- Nyquist filters have almost half of their coefficients equal to zero.
- Upsampled signals have every other sample equal to zero.
- Lots of zeros ⇒ an opportunity!
- There are two alignments of data and filter coefficients:
 1. The center tap of the filter aligns with a non-zero value in the upsampled data stream.
 - The result is a trivial single multiply.
 - With clever scaling, the multiplier can be reduced to a power-of-2 shift requiring no hardware whatsoever.
 2. The other alignment.
 - The result is a simplified filter with almost half the hardware because \((N-1)/2\) of the FIR multiplications are zero times zero.
 - \(N\) delay registers are still needed however.
Nyquist Filters and Upsampled Signals

- The Nyquist filter can then be implemented very efficiently by dividing the filter into two components that compute the two alignments and reconstructing the output with a 2:1 mux which interleaves samples taken from each filter every other cycle.
Nyquist Filters and Upsampled Signals

- Another great benefit: the two filters are operating in the slower pre-upsampled sampling frequency domain
- Upsampling is performed in the mux

Of course the filtered output is identical when calculated using either approach
Nyquist Filters and Upsampled Signals

- Recall that for common static CMOS circuits,
 \[\text{Power} = C \ V^2 \ f \]
- In summary, the optimized merged upsampler/filter using a Nyquist filter yields:
 - Approximately half the total hardware
 \[\rightarrow C' = C/2 \]
 - Filters operating at half the clock frequency
 \[\rightarrow f' = f/2 \]
 - Only a 2:1 mux operates at the faster upsampled clock frequency
 - \(\text{Power}' \) approximately 1/4 of the original power; probably a little less due to relaxed timing requirements of the simplified filter