NYQUIST FILTERS



Generation of Nyquist Filters

e Use remez(*®) in matlab but you must constrain the frequency points
and amplitudes in certain ways

— The frequency vector values must mirror each other in pairs around m/2
e For example: [0 0.2 0.4 0.6 0.8 1]
[0 0.11 0.34 0.66 0.89 1]
— The amplitude vector values must mirror each other in pairs around a
magnitude of 0.50

e For example: [1 1 0 0] $ 1
[0 0.05 0.10 0.90 0.95 1] % high-pass
e Typically coetficients that should be
zero will be close but not exactly zero
when they are generated by remez(®)

— Round these to make them exactly zero '@
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Nyquist Filter -
Example

NumTaps = 21;
PrintOn = 1;

o°

% Generate Nyquist filter coefficients
coeffs = remez (NumTaps-1, [0 0.45 0.55 1], [1 0.95 0.05 0]);

figure(l); clf;

* Copy and paste ot e,
axis ([-11 11 -0.15 0.55]1);
title ('Nyquist filter coefficients');

thls program grid on;
: * f'l if (PrintOn) print -dtiff 1.tiff; end
into a ".m file
figure(2); clf;
(jl b freqz (coeffs) ;
a_n eXperlment title('Filter frequency response plotted by freqgz(); Note -6dB at \pi/2');

subplot (2,1,1); % select the top magnitude plot
axis ([0 1 -45 5]1); % scale vertical axis more reasonably to see features

yourself in

plot (0.5, -6, 'ro');
matlab! if (PrintOn) print -dtiff 2.tiff; end

% Generate white-noise flat-spectrum signal
in = rand(l, 100000) - 0.5;

figure(3); clf;

psd (in) ;

axis ([0 1 -18 -47);

title ('White-noise input signal to characterize filter; 100,000 samples');

if (PrintOn) print -dtiff 3.tiff; end

% Pass the white-noise signal through the filter
out = conv(coeffs, in);

figure(4); clf;

psd(out) ;

title('Filter frequency response plotted by psd(); 100,000 samples; note -6dB (-17dB) at \pi/2');
axis ([0 1 -50 -5]); % scale vertical axis more reasonably to see features

hold on;

plot (0.5, -17, 'ro');

if (PrintOn) print -dtiff 4.tiff; end



Nyquist Filter Coefficients
Impulse Response

o 21-tap example
e It has significantly
reduced hardware
with almost half of
its coetfs == zero
— (N-1)/2 taps
equal to zero for
N = 4k+1
— (N=3)/2 taps
equal to zero for
N = 4k+3
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The filter’s
frequency
response plot
made by
fregz(*)
Note these critical
points to make a
comparison later
- —6dBat /2
(1/2 magnitude)
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Filter frequency response plotted by freqz(); Note -6dB at n/2
T T T T T T T T T

0.1

Y

1
0.2 03 0.4 0.5
Normalized Frequency (xm rad/sample)

0.1

| |
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (xw rad/sample)



The Second Less-Accurate Method
to Measure Filter Response

e “White noise” random » White-noise input signal to characterize filter; 100,000 samples
signals have a (nearly)
flat spectrum 6|

e This example contains
100,000 samples

— More samples will
make the spectrum
flatter
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* We will pass this
signal through our
filter and view the
output spectrum to
gauge the filter’s
frequency response
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The Second Less-Accurate Method
to Measure Filter Response

Filtegfrequency response plotted by psd(); 100,000 samples; note -6dB (-17dB) at /2
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* This is the spectrum
of the white-noise
signal after being
passed through the il
filter

* Note approximate
values
- —6dBat /2

— 20dB at
0.68 7

— It matches freqz()!
e Recall that this st

method is best for » A /\/\m

actual bit—accurate 0 0.|1 0.|2 0.|3 0.|4 0.‘5 0.6 0.7 0.8 0.9 1
. Frequency
HW designs

-10

-20 +

-25F

-30

=35+

Power Spectrum Magnitude (dB)

_40 k




NYQUIST &
UPSAMPLING FILTERS



Nyquist Filters and Upsampled
Signals

* First recall standard approach

— Low-pass filter has cutoff frequency at /2

—> upsamp 2 > LPF p—

2




Nyquist Filters and Upsampled
Signals

Nyquist filters have almost half of their coefficients equal to zero
Upsampled signals have every other sample equal to zero
Lots of zeros = an opportunity!

There are two alignments of data and filter coefficients

1. The center tap of the filter aligns with a non-zero value in the
upsampled data stream

* The resultis a trivial single multiply

e  With clever scaling, the multiplier can be reduced to a
power-of-2 shift requiring no hardware whatsoever

2. The other alignment

* The result is a simplified filter with almost half the hardware
because (N-1)/2 of the FIR multiplications are zero times zero

* N delay registers are still needed however



Nyquist Filters and Upsampled
Signals

e The Nyquist filter can then be implemented very
efficiently by dividing the filter into two components
that compute the two alignments and reconstructing
the output with a 2:1 mux which interleaves samples
taken from each filter every other cycle
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Nyquist Filters and Upsampled
Signals

* Another great benefit: the two filters are operating in the slower
pre-upsampled sampling frequency domain
¢ Upsampling is performed in the mux
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Ex: 21-tap

Of course the
. filtered
sampling sampling e
frequency ¢ frequency when
. S 2 f calculated
fS J Filter | ‘ S using either
‘ Ex: O tap approach
input  —— —— filtered output
. _ fS
Filter Il

’ Ex: 10-tap




Nyquist Filters and Upsampled
Signals

e Recall that for common static CMOS circuits,
Power = C V? f

* In summary, the optimized merged upsampler/filter
using a Nyquist filter yields:

— Approximately half the total hardware
2> C'=(C/2

— Filters operating at half the clock frequency
>f =f2

— Only a 2:1 mux operates at the faster upsampled clock

frequency

— Power” approximately 1/4 of the original power; probably a
little less due to relaxed timing requirements of the
simplified filter



