MULTIPLICATION SCALING



Multiplication Scaling

1. Multiplication of two 2’s complement numbers

For two N-bit inputs, the output word width must
be 2N bits to avoid overflow or underflow

Example:
e Inputs: 4-bit x 4-bit; each input range [-8, +7]
¢ OQOutput: product: range [-56, +64]
8-bit: range [-128, +127]
7-bit: range [-64, +63]
e Notice however that the MSB almost completely wasted —there
is only case that uses it: -8 X -8 = +64

+1.0

There is no way around this unless we can somehow guarantee
this one case will never occur

Or for fractional 1 .X notation: -1 x -1

Normally it is unacceptable to ignore the MSB and let this case
overflow



Multiplication by [-1, +1]

2. Assuming fractional numbers, we often want to
multiply by a number that ranges from —1.0 to +1.0
What is the best way to encode that input?

1) Normally, the only way would be to encode it in:

2.X (range [-2, +1.99]) format because
1.X (range [-1, +0.99]) would overflow

Effectively lose almost a bit of precision for the same hardware

2) The only case that causes a problem is +1.0

This is the most trivial multiplication!
Perform x +1.0 with a mux!

Select mux bypass when the one multiplier
input is equal to 1.0

Input can then be coded in 1.Xx format
Achieve N-1 fractional bits for an N-bit multiply
Note there may still be a separate issue with -1 x -1

COS



3.

Complex Rotation

(complex rectangular-form values)

Assuming fractional numbers, we often
want to multiply by a complex number -
with a magnitude of +1.0

Even though we multiply by Bl =1.0,
we must increase the output word Overflow
size by 1 bit unless we know the ‘

A
. . : 1 4
input word (A) is restricted to a +
magnitude less than 1.0 / %
Inputrangecﬁf§ \\\\\\‘4//(///
-1 H

Unit circle

1



Complex Multiplication Scaling

prawn_57> matlab -nodesktop

<MATLAB QR >
Copyright 1984-2009 The MathWorks, Inc.
Version 7.8.0.347 (R2009a) 32-bit (glnx86)
February 12, 2009

>> a =0.9 + j*0.9
a =
0.9000 + 0.9000i

>> b= 1/sqrt(2) + j*1/sqrt(2)
b =
0.7071 + 0.7071i

>> abs(b) % abs() gives the magnitude of a complex number
ans =
1.0000

>> a*b
ans =
0 + 1.2728i

>>

/

/ v

Input range of A



Complex Multiplication by a Value
Whose Components Range [-1, +1]

4) (complex rectangular-form values) Handling
multiplication by an input which ranges up to +1.0

— Similar to non-complex case

— Two special cases:
e Multiply by (+1.0, 0)
e Multiply by (0, +1.0)
 (-1.0, 0) and (0O, —1.0) present no special encoding challenges

— Solutions:
1) Code (fractional) inputs in 2. X format
Effectively wastes almost an entire bit

2) Use muxes to bypass complex multiplier for the two cases
Modest extra hardware



