
MEMORIES

Printed 2021/03/01

© B. Baas 248

Memory Outline

• Overview

– Array Memory View 1

– Array Memory View 2: Types

• Read/Write

• ROM

• NVRWM

– Array Memory View 3

• Combinational

• Technically sequential

• Sequential

• 6T SRAM cell

• SRAM circuits and layout

• Multi-port SRAM

• DRAM

• ROM circuits and layout

• Array Memory View 4: memories for ASICs
and FPGAs

– On-chip macros

• ASICs

• FPGAs

– On-chip standard cell

• ASICs

• FPGAs

– Off-chip

• Synthesized standard cell memories

– Verilog

– Timing

– ROM: standard cell verilog

– ROM: FPGA block RAM

© B. Baas 249

Array Memory View 1:
A Component of Digital Systems

• Three primary components of digital systems

– Datapath (does the work)

– Control (manager)

– Memory (storage)

• “Single bit” (“foreground”)

– Clockless latches e.g., SR latch

– Clocked transparent latches e.g., D latch

– Clocked edge-triggered flip flops e.g., D FF

• “Array” memories (“background”)

© B. Baas 250

Memories

• Use in general digital processors
– Instructions

– Data

• Usage is more widespread in DSP, multimedia,
embedded processors
– Buffering input/intermediate/output data (e.g., rate

matching)

– Storing fixed numbers (e.g., coefficients)

– Often relatively small (e.g., 8-64-256 words) and numerous
(dozens are not unusual)

• Key design goal: density, especially for the memory
cells. This means fitting the largest amount of
memory storage into a certain amount of chip area

© B. Baas 251

Array Memory View 2:
Types of Memories

1. Read-write memories
– SRAM: Static random access memory

• Data is stored as the state of a bistable circuit typically using “back-to-back”
inverters

• State is retained without refresh as long as
power is supplied

– DRAM: Dynamic random access memory
• Data is stored as a charge on a capacitor

• State leaks away, refresh is required

2. ROM: Read-only memory, non-volatile
– Basic ROM – mask programmed at design time

– PROM: Programmable read-only memory;
typically programmed at manufacture time by a “PROM burner”

• Using fuse or anti-fuse circuits

– Synthesized from standard cells

3. NVRWM: Non-volatile read-write memory
– EPROM: Erasable ROM, erasable with UV light

– EEPROM/Flash: ROM at low voltages, writable at high voltages

© B. Baas 252

Memory View 3:
Memory Logical Categories

• Combinational (output depends on present inputs only)
– ROM: read-only memory

– May be straight-through truly-combinational, or registered

• Feels like Combinational but technically Sequential
– PROM: programmable read-only memory

– EPROM: ROM, but erasable with UV light

• Sequential (output depends on present and past inputs)
– SRAM: static memory

– DRAM: dynamic memory

– Flash: ROM at low voltages, writable at high voltages

© B. Baas 253

Basic Memory
Inputs and Outputs

• The basic memory structure includes a write port and
a read port as shown in the figure
– Clocked or Synchronous memories include a clock input

– A read-enable input (rd_en) is not needed for functionality
but is often included to enable reduced power dissipation
when read operations are not needed

Memory

write port

read port

wr_addr
wr_data

wr_en

rd_data
rd_en

rd_addr

clock

© B. Baas 254

Memories

• Memories generally contain
several components:
– Array of cells

– Address decoder

– Write circuitry

– Read circuitry
(sense amplifiers)

– wordlines

– bitlines

• Interface signals
– Address (one for each port)

– Data (one for each port)

– Enable_write

– Enable_read (likely)

– Clock (sometimes)

cell cellcell …

cell cellcell …

cell cellcell …

word

or

address

decoder

write/read

circuitry

…… …

bitlines

w
o

rd
li

n
es

Addr

Data_rd Data_wr

© B. Baas 264

Memory
Array

• Human hair on a
256 Kbit memory
chip

Source: Helmut Föll

© B. Baas 269

Multi-ported SRAM

• Frequently used in register files
– Classic RISC computers have 1 write and 2 read ports

– Modern multiple-instruction-issue computers can have
many ports (22 (12 Rd, 10 Wr) in Itanium [ISSCC 05])

• More commonly use single-ended (non-differential)
bitlines

Memory2 write ports 4 read ports

Addr/Data

Addr/Data

© B. Baas 279

Memory
Array

• Human hair on a
4 Mbit memory
chip

• Note DRAM
trench capacitors

Source: Helmut Föll

© B. Baas 280

Memory Array

• Red blood cells on a
1 Mbit memory chip

Source: Helmut Föll

© B. Baas 284

Memory View 4: Memory Types for Custom-
Designed Chips (Also known as "ASICs")

• Memories for custom processors can be built in
a number of ways:

1) On-chip “macro” memory arrays
A. Think of as a single giant standard cell

B. FPGAs include them (“block RAMs” or “block memory”)

2) On-chip memory synthesized from verilog

A. standard cells (e.g., NANDs, NORs, FFs, etc.)

B. FPGA combinational logic blocks, LUTs, etc.

3) Off-chip memories (often for > approx. 10 MB)
• Very large DRAM

• Non-volatile memory such as flash memory

• (We could also include disks, NAS, cloud, etc.)

© B. Baas 285

1A) On-Chip Memory
“Macro” Arrays

• Memory macro-cell generators are
available for larger memories

• Typically a software tool generates a large
variety of possible memories where a user
may select options such as:

– Number of words

– Word-width (in bits)

– Number of read ports

– Number of write ports

– Rd/wr or ROM

– Built-in test circuits

– Registered inputs and/or outputs

• Tool produces models for verilog, place &
route, and other CAD views

RAM macro

© B. Baas 286

1A) On-Chip Memory
“Macro” Arrays

• Generally very area
efficient due to dense
memory cells (single-
ported memories likely
use 6-transistor (6T)
memory cells)

• Generally good energy
efficiency due to low-
activity memory array
architecture

• Example: CMOS chip

[T. Nanya, et al., TITAC-2 0.5 um CMOS, 496K transistors, 12.15 mm × 12.15 mm processor]

1B) On-chip Memory
“macro” arrays:

FPGAs

• Example: FPGA

• Altera Max 10
10M50DAF484C7G chip

• Yellow rectangles are M9K
memory blocks

– Each block contains 8192 bits
(9216 including parity)

– 182 on each chip

– Total of 182 KBytes (204 KB)

• Light-blue rectangles: Logic
Array Blocks (LAB)

• White rectangles: hardware
18x18 multipliers (144 on
chip)

© B. Baas 287

© B. Baas 288

2) Synthesized Memory

• Can synthesize
memory from
standard cells
– Memory cells are

now flip-flops

– clk likely routed to
all cells

– Probably best for
small memories only

– Read bitline logic
may be muxes

reg regreg …

reg regreg …

reg regreg …

word

or

address

decoder

…… …

write/read

circuitry

clk

© B. Baas 289

2A) Synthesized Memory:
Standard Cells

• Standard cell layout is typically irregular
– Wires not shown

– Clocks routed to each “reg” (flip-flop)

reg reg

BUF

regreg

&

ORreg

reg

BUF& ORBUF

&

ORBUF

MUX MUX

MUX

reg

reg

regreg

reg

reg reg

regreg regreg

reg

INV

© B. Baas 290

2A) Synthesized Memory:
FPGA “building block” Cells

• Our FPGA chip has
50,000 “logic element”
blocks which include
logic and a few memory
elements and can be
configured into an array
memory

© B. Baas 291

Verilog Memories

• Declaring a 16-bit, 128-word memory
– reg [15:0] Mem [0:127];

• Reading a memory

– This is combinational logic

– Essentially a massive mux choosing among FF outputs

• Writing a memory

– Writing is done in a way very much like writing FF registers

– Remember: for this class, always use non-blocking writes

Mem[addr_wr] <= #1 c_datapath_out; // makes sense for a

// memory made of FFs

source1 = Mem[addr_rd]; // combinational logic

© B. Baas 292

Verilog SRAM Memories—
Combinational (Asynchronous) Read

• This memory performs writes
on the positive edge of the
clock when write_enable is high

• The output is not controlled by
the clock and outputs the correct
memory word for any address
on addr_rd
– Picture a large mux tree connecting every word in the memory

to the output port

– Sometimes called an “asynchronous read”

reg [15:0] mem [0:127];

always @(posedge clk) begin

if (write_enable == 1’b1) begin

mem[addr_wr] <= #1 data_in;

end

end

assign data_out = mem[addr_rd];

© B. Baas 293

Verilog SRAM Memories—
Synchronous Read

• This memory also performs
writes on the positive edge
of the clock when
write_enable is high

• However it contains a
“synchronous read” which
updates the output port only
on the active edge of the clock
– There is now one clock cycle of delay from when addr_rd is valid

to when the read output is valid

• The M9K memory blocks in Altera FPGAs work this way

reg [15:0] mem [0:127];

always @(posedge clk) begin

if (write_enable == 1’b1) begin

mem[addr_wr] <= #1 data_in;

end

data_out <= #1 mem[addr_rd];

end

© B. Baas 294

Verilog SRAM Memories—
With Read Enable

• Adding a read enable capability
does not change the functional
usage of a memory—there is no
functional issue with ignoring
data that was unnecessarily
read

• However enabling the read
of a memory may enable a significant reduction in the
power dissipation of the memory
– Depends on the fraction of cycles that perform reads

– Depends on the power of adding the read enable capability in the
RAM and also of generating the read enable signal

reg [15:0] mem [0:127];

always @(posedge clk) begin

if (write_enable == 1’b1) begin

mem[addr_wr] <= #1 data_in;

end

if (read_enable == 1’b1) begin

data_out <= #1 mem[addr_rd];

end

end

© B. Baas 295

Sub-Word Operations and
Multiple Read Ports

• Reading and writing portions of words
– It is not possible to access a portion of a word without first

reading the whole word, in many simulators and CAD tools
(though it is supported in some). Therefore, it is good practice
to not do it! So don’t in this class.

– source1 = Mem[addr_rd][5]; // won’t work sometimes

– temp = Mem[addr_rd]; // use these 2 lines instead

source1 = temp[5];

• Multiple unclocked read ports
– Simply make individual read statements for each read port
– data1 = Mem[addr_rd1];

data2 = Mem[addr_rd2];

data3 = Mem[addr_rd3];

© B. Baas 296

Memory Pipelining/Timing
Timing Style 1

• Style 1:
Registers are
outside the cell
array

• Memory
macros may
contain
registers for
inputs or
outputs or not
at all

cell cellcell …

cell cellcell …

cell cellcell …

word

or

address

decoder

write/read

circuitry

…… …

Memory

macro

boundary

examples

© B. Baas 297

Memory Pipelining/Timing
Writes

• Synchronous-write
RAMs are the most
robust and
common style

• Write operations
complete one cycle
after valid address,
data, and en_wr = 1
are present at the
inputs

Memory

data_wraddr_wr en_wr

© B. Baas 298

Memory Pipelining/Timing
Reads

• Two main timing models
are common for RAM
reads: (left) asynchronous
(straight through
combinational), and
(right) synchronous with
one cycle latency from
addr_rd to valid data_rd

• The two synchronous
models operate the same
except when considered
with the timing of writes
to the same address

Memory

addr_rd

data_rd

Memory

data_rd

addr_rd

Memory

data_rd

addr_rd

© B. Baas 299

Simultaneous Write and Read
Operations

• What is the read data when a read and
write are performed to the same
address? Good question! It depends on
the specific circuits used in the
memory. There are several possibilities:
– The “old” data existing in the previous

cycle

– The “new” data being currently written

– “Don’t care” – this means it could be old,
new, or some bits from each

Memory

© B. Baas 300

Simultaneous Write and Read
Operations

• Example: M9K block
RAMs with various
port configurations
and various selectable
simultaneous
write/read
characteristics

• Selectable “old” or
“new” from a single
port is likely
implemented by the
order the RAM
performs the two
operations

Intel MAX 10 Embedded Memory User Guide, page 20

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-10/ug_m10_memory.pdf

© B. Baas 301

Memory Pipelining/Timing
Timing Style 2

• Style 2: Register is
in the middle of the
memory array

• Memories built
with individual
FFs for memory
cells effectively
contain a pipeline
register across the
middle of the
entire memory
array

reg regreg …

reg regreg …

reg regreg …

word

or

address

decoder

write/read

circuitry

…… …

clk

© B. Baas 302

Memory Pipelining/Timing
Timing Style 2

• The built-in pipeline
stage is somewhere
in the middle of the
memory block

• A well-balanced
system would
therefore place a
reduced amount of
logic before and after
the memory array to
maintain a high clock
frequency

Memory Memory

logic

logic

logic

© B. Baas 303

Block Diagram of a FF-based Memory with an
Asynchronous (Combinational) Read Port

• There is only a
combinational logic
delay from the read
address to the read data

• This block diagram is not
a valid “pipelined block
diagram” and would
therefore be confusing to
use to design a pipeline

• A simultaneous read and
write to the same address
will result in the read
returning the old data,
keeping in mind that the
read occurs in a single cycle

…

reg [15:0] mem [0:127];

wire [15:0] rd_data;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

end

assign rd_data = mem[rd_addr];

…

rd_data
wr_data

wr_addr

wr_en

rd_addr

decoder

and other

logic

© B. Baas 304

Block Diagram of a FF-based Memory with a
Synchronous Read Port

• There is a single-cycle
delay from the read
address to the read data

• This block diagram is a
valid “pipelined block
diagram” but is perhaps
not the desired circuit

• A simultaneous read and
write to the same address
will result in the read
returning the new data

…

reg [15:0] mem [0:127];

reg [15:0] rd_data;

reg [10:0] rd_addr_p2;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

rd_addr_p2 <= #1 rd_addr;

end

assign rd_data = mem[rd_addr_p2];

…

rd_data
wr_data

wr_addr

wr_en

rd_addr

decoder

and other

logic

rd_addr_p2

© B. Baas 305

Block Diagram of a FF-based Memory
with a Synchronous Read Port

• There is a single-cycle
delay from the read
address to the read data

• A simultaneous read and
write to the same address
will result in the read
returning the old data

…

reg [15:0] mem [0:127];

reg [15:0] rd_data;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

rd_data <= #1 mem[rd_addr];

end

…

rd_data
wr_data

wr_addr

wr_en

rd_addr

decoder

and other

logic

• This diagram is not a valid
“pipelined block diagram”
and would be confusing to
use to design a pipeline

– The signal rd_addr crosses a
vertical line of registers without
being registered which violates
the diagram’s fundamental
definition

© B. Baas 306

Block Diagram of a FF-based Memory
with a Synchronous Read Port

• The read and write operations are in many ways independent; they interact
only through the central memory cell array

• Another reasonable approach is to split the memory block diagram into two
parts and draw the two halves in different sections of the system

– “Hazards” of interactions between writes and reads are considered separately, such as with
pipeline diagrams when designing processors

…

wr_data

wr_addr

wr_en

decoder

and other

logic

…

…

rd_data

rd_addr

INSTR.

FETCH

DEC-

ODE

EXEC MEM WRITE

BACK

© B. Baas 307

Pipelined Block Diagram of a FF-based
Memory with a Synchronous Read Port

• This is a valid “pipelined
block diagram” of a FF-based
memory with a synchronous
read port and is the one you
should use

• Internal cell array bits (gray
lines) flow right to left and
are not pipelined (registered)

…

reg [15:0] mem [0:127];

reg [15:0] rd_data;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

rd_data <= #1 mem[rd_addr];

end

…

rd_data

wr_data

wr_addr

wr_en

rd_addr

decoder

and other

logic

© B. Baas 308

ROMs – 1) Synthesized from Std Cells
(A Combinational Circuit)

• Small ROMs can be
efficiently
synthesized
from standard cells

• Implementations are
more efficient if the
data is less random
in an information-
theory sense

– Ex: 10-bit input,
out=1 if input/4 is
an integer

• It is advisable to
generate tables from
a program such as
matlab

// todo: add “default” case for safety

always @(input) begin

case (input)

4'b0000: begin real=8'b01000000; imag=8'b00000000; end // angle = 0.00000

4'b0001: begin real=8'b00111011; imag=8'b00011000; end // angle = 0.12500

4'b0010: begin real=8'b00101101; imag=8'b00101101; end // angle = 0.25000

4'b0011: begin real=8'b00011000; imag=8'b00111011; end // angle = 0.37500

4'b0100: begin real=8'b00000000; imag=8'b01000000; end // angle = 0.50000

4'b0101: begin real=8'b11101000; imag=8'b00111011; end // angle = 0.62500

4'b0110: begin real=8'b11010011; imag=8'b00101101; end // angle = 0.75000

4'b0111: begin real=8'b11000101; imag=8'b00011000; end // angle = 0.87500

4'b1000: begin real=8'b11000000; imag=8'b00000000; end // angle = 1.00000

4'b1001: begin real=8'b11000101; imag=8'b11101000; end // angle = 1.12500

4'b1010: begin real=8'b11010011; imag=8'b11010011; end // angle = 1.25000

4'b1011: begin real=8'b11101000; imag=8'b11000101; end // angle = 1.37500

4'b1100: begin real=8'b00000000; imag=8'b11000000; end // angle = 1.50000

4'b1101: begin real=8'b00011000; imag=8'b11000101; end // angle = 1.62500

4'b1110: begin real=8'b00101101; imag=8'b11010011; end // angle = 1.75000

4'b1111: begin real=8'b00111011; imag=8'b11101000; end // angle = 1.87500

endcase

end

• This example table has:
– 4-bit input address

– 16-bit (8-bit + 8-bit complex) output

© B. Baas 309

ROMs – 1) Synthesized from Std Cells

• If applicable, matlab may be a good choice for a
program to print the verilog table as plain text
– You will need several versions to get it right so rapid

(re)generation is a huge time saver

– matlab has rock-solid common functions, rounding, etc.

– matlab has superb plotting capabilities for checking all sorts of
characteristics such as bias, frequency response, etc.

– An automatically generated table is easy to adapt to other
specifications such as binary word width, number format, etc.
in case the problem specification changes

– Print everything between “case” and “endcase” then copy &
paste the matlab output into your verilog file

© B. Baas 310

ROMs – 1) Synthesized from Std Cells

• This is the matlab code that generated the previously-shown
lookup table

• Copy, Paste, Run, Change, Run!

% table_gen.m

% 2018/02/22 Last modified (BB)

fprintf(1, 'always @(theta) begin\n');

fprintf(1, ' case (theta)\n');

% Main loop, once for each possible input

for k=0:15

angle = 2 * pi * k / 16;

re = cos(angle);

re = round(re * 2^6); % scale +1 -> 64 since max is +127; then round

im = sin(angle);

im = round(im * 2^6); % scale +1 -> 64 since max is +127; then round

fprintf(1, ' 4''b%s: begin ', real2unsigned(k,4,0));

fprintf(1, 'real=8''b%s; ', real2twos(re,8,0));

fprintf(1, 'imag=8''b%s; ', real2twos(im,8,0));

fprintf(1, 'end ');

fprintf(1, '// angle = %f pi', angle/pi);

fprintf(1, '\n');

end

fprintf(1, ' endcase\n');

fprintf(1, 'end\n');

© B. Baas 311

Using Matlab for Lookup Table
Generation

• Helpful matlab commands:
fprintf()

real2twos()

real2unsigned

help [matlab_command_name]

© B. Baas 312

ROMs – 2) FPGA Block RAM

• Larger ROMs on FPGAs can make
use of block RAMs whose contents
can be specified with a verilog
“initial” block

• Read operations are synchronous
and update the output port only
on the active edge of the clock
– There is now one clock cycle of delay

from when addr_rd is valid to when the read output is valid

• The M9K memory blocks in Altera FPGAs work this way

• This is the only case when it is ok to break our rule of no
initial blocks in hardware verilog!

reg [7:0] rom [0:127];

// Yes, this is HW verilog

initial begin

rom[0] = 8’h35;

rom[1] = 8’h2E;

rom[2] = 8’hFF;

...

end

always @(posedge clk) begin

data_out <= #1 rom[addr_rd];

end

