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Array Memory View 1: 
A Component of Digital Systems

• Three primary components of digital systems

– Datapath (does the work)

– Control (manager)

– Memory (storage)

• “Single bit” (“foreground”)

– Clockless latches e.g., SR latch

– Clocked transparent latches e.g., D latch

– Clocked edge-triggered flip flops e.g., D FF

• “Array” memories (“background”)
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Memories

• Use in general digital processors
– Instructions

– Data

• Usage is more widespread in DSP, multimedia, 
embedded processors
– Buffering input/intermediate/output data (e.g., rate 

matching)

– Storing fixed numbers (e.g., coefficients)

– Often relatively small (e.g., 8-64-256 words) and numerous 
(dozens are not unusual)

• Key design goal: density, especially for the memory 
cells. This means fitting the largest amount of 
memory storage into a certain amount of chip area
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Array Memory View 2:
Types of Memories

1. Read-write memories
– SRAM: Static random access memory

• Data is stored as the state of a bistable circuit typically using “back-to-back” 
inverters

• State is retained without refresh as long as 
power is supplied

– DRAM: Dynamic random access memory
• Data is stored as a charge on a capacitor

• State leaks away, refresh is required

2. ROM: Read-only memory, non-volatile 
– Basic ROM – mask programmed at design time

– PROM: Programmable read-only memory; 
typically programmed at manufacture time by a “PROM burner”

• Using fuse or anti-fuse circuits

– Synthesized from standard cells

3. NVRWM: Non-volatile read-write memory
– EPROM: Erasable ROM, erasable with UV light

– EEPROM/Flash: ROM at low voltages, writable at high voltages
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Memory View 3: 
Memory Logical Categories

• Combinational (output depends on present inputs only)
– ROM: read-only memory

– May be straight-through truly-combinational, or registered

• Feels like Combinational but technically Sequential
– PROM: programmable read-only memory

– EPROM: ROM, but erasable with UV light

• Sequential (output depends on present and past inputs)
– SRAM: static memory

– DRAM: dynamic memory

– Flash: ROM at low voltages, writable at high voltages
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Basic Memory 
Inputs and Outputs

• The basic memory structure includes a write port and 
a read port as shown in the figure
– Clocked or Synchronous memories include a clock input

– A read-enable input (rd_en) is not needed for functionality 
but is often included to enable reduced power dissipation 
when read operations are not needed

Memory

write port

read port

wr_addr
wr_data

wr_en

rd_data
rd_en

rd_addr

clock
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Memories

• Memories generally contain 
several components:
– Array of cells

– Address decoder

– Write circuitry

– Read circuitry 
(sense amplifiers)

– wordlines

– bitlines

• Interface signals
– Address (one for each port)

– Data (one for each port)

– Enable_write

– Enable_read (likely)

– Clock (sometimes)

cell cellcell …

cell cellcell …

cell cellcell …

word

or 

address

decoder

write/read

circuitry

…… …

bitlines
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Memory 
Array

• Human hair on a 
256 Kbit memory 
chip

Source: Helmut Föll
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Multi-ported SRAM

• Frequently used in register files
– Classic RISC computers have 1 write and 2 read ports

– Modern multiple-instruction-issue computers can have 
many ports (22 (12 Rd, 10 Wr) in Itanium [ISSCC 05])

• More commonly use single-ended (non-differential) 
bitlines

Memory2 write ports 4 read ports

Addr/Data

Addr/Data
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Memory 
Array

• Human hair on a 
4 Mbit memory 
chip

• Note DRAM 
trench capacitors

Source: Helmut Föll
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Memory Array

• Red blood cells on a 
1 Mbit memory chip

Source: Helmut Föll
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Memory View 4: Memory Types for Custom-
Designed Chips (Also known as "ASICs")

• Memories for custom processors can be built in 
a number of ways:

1) On-chip “macro” memory arrays
A. Think of as a single giant standard cell

B. FPGAs include them (“block RAMs” or “block memory”)

2) On-chip memory synthesized from verilog

A. standard cells (e.g., NANDs, NORs, FFs, etc.)

B. FPGA combinational logic blocks, LUTs, etc.

3) Off-chip memories (often for > approx. 10 MB)
• Very large DRAM

• Non-volatile memory such as flash memory

• (We could also include disks, NAS, cloud, etc.)
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1A) On-Chip Memory 
“Macro” Arrays

• Memory macro-cell generators are 
available for larger memories

• Typically a software tool generates a large 
variety of possible memories where a user 
may select options such as:

– Number of words

– Word-width (in bits)

– Number of read ports

– Number of write ports

– Rd/wr or ROM

– Built-in test circuits

– Registered inputs and/or outputs

• Tool produces models for verilog, place & 
route, and other CAD views

RAM macro
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1A) On-Chip Memory 
“Macro” Arrays

• Generally very area 
efficient due to dense 
memory cells (single-
ported memories likely 
use 6-transistor (6T) 
memory cells)

• Generally good energy 
efficiency due to low-
activity memory array 
architecture

• Example: CMOS chip

[T. Nanya, et al., TITAC-2 0.5 um CMOS, 496K transistors, 12.15 mm × 12.15 mm processor]



1B) On-chip Memory 
“macro” arrays:

FPGAs

• Example: FPGA

• Altera Max 10 
10M50DAF484C7G chip

• Yellow rectangles are M9K 
memory blocks

– Each block contains 8192 bits 
(9216 including parity)

– 182 on each chip

– Total of 182 KBytes (204 KB)

• Light-blue rectangles: Logic 
Array Blocks (LAB)

• White rectangles: hardware 
18x18 multipliers (144 on 
chip)
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2) Synthesized Memory

• Can synthesize 
memory from 
standard cells
– Memory cells are 

now flip-flops

– clk likely routed to 
all cells

– Probably best for 
small memories only

– Read bitline logic 
may be muxes

reg regreg …

reg regreg …

reg regreg …
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address
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write/read

circuitry

clk
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2A) Synthesized Memory:
Standard Cells

• Standard cell layout is typically irregular
– Wires not shown

– Clocks routed to each “reg” (flip-flop)

reg reg

BUF

regreg

&

ORreg

reg

BUF& ORBUF

&

ORBUF

MUX MUX

MUX

reg

reg

regreg

reg

reg reg

regreg regreg
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2A) Synthesized Memory:
FPGA “building block” Cells

• Our FPGA chip has 
50,000 “logic element” 
blocks which include 
logic and a few memory 
elements and can be 
configured into an array 
memory
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Verilog Memories

• Declaring a 16-bit, 128-word memory
– reg [15:0] Mem [0:127];

• Reading a memory

– This is combinational logic

– Essentially a massive mux choosing among FF outputs

• Writing a memory

– Writing is done in a way very much like writing FF registers

– Remember: for this class, always use non-blocking writes

Mem[addr_wr] <= #1 c_datapath_out;   // makes sense for a  

// memory made of FFs

source1 = Mem[addr_rd];              // combinational logic
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Verilog SRAM Memories—
Combinational (Asynchronous) Read

• This memory performs writes
on the positive edge of the 
clock when write_enable is high

• The output is not controlled by
the clock and outputs the correct
memory word for any address
on addr_rd
– Picture a large mux tree connecting every word in the memory 

to the output port

– Sometimes called an “asynchronous read”

reg [15:0]    mem [0:127];

always @(posedge clk) begin

if (write_enable == 1’b1) begin

mem[addr_wr] <= #1 data_in;

end

end

assign data_out = mem[addr_rd];
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Verilog SRAM Memories—
Synchronous Read

• This memory also performs 
writes on the positive edge 
of the clock when 
write_enable is high

• However it contains a
“synchronous read” which 
updates the output port only
on the active edge of the clock
– There is now one clock cycle of delay from when addr_rd is valid 

to when the read output is valid

• The M9K memory blocks in Altera FPGAs work this way

reg [15:0]    mem [0:127];

always @(posedge clk) begin

if (write_enable == 1’b1) begin

mem[addr_wr] <= #1 data_in;

end

data_out <= #1 mem[addr_rd];

end
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Verilog SRAM Memories—
With Read Enable

• Adding a read enable capability
does not change the functional 
usage of a memory—there is no
functional issue with ignoring
data that was unnecessarily
read

• However enabling the read
of a memory may enable a significant reduction in the 
power dissipation of the memory
– Depends on the fraction of cycles that perform reads

– Depends on the power of adding the read enable capability in the 
RAM and also of generating the read enable signal

reg [15:0]    mem [0:127];

always @(posedge clk) begin

if (write_enable == 1’b1) begin

mem[addr_wr] <= #1 data_in;

end

if (read_enable == 1’b1) begin

data_out <= #1 mem[addr_rd];

end

end
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Sub-Word Operations and
Multiple Read Ports

• Reading and writing portions of words
– It is not possible to access a portion of a word without first 

reading the whole word, in many simulators and CAD tools 
(though it is supported in some).  Therefore, it is good practice 
to not do it!  So don’t in this class.

– source1 = Mem[addr_rd][5];    // won’t work sometimes

– temp    = Mem[addr_rd];       // use these 2 lines instead

source1 = temp[5];

• Multiple unclocked read ports
– Simply make individual read statements for each read port
– data1 = Mem[addr_rd1];

data2 = Mem[addr_rd2];

data3 = Mem[addr_rd3];
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Memory Pipelining/Timing
Timing Style 1

• Style 1: 
Registers are 
outside the cell 
array

• Memory 
macros may 
contain 
registers for 
inputs or 
outputs or not 
at all

cell cellcell …

cell cellcell …

cell cellcell …

word

or 

address

decoder

write/read

circuitry

…… …

Memory

macro

boundary

examples
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Memory Pipelining/Timing
Writes

• Synchronous-write 
RAMs are the most 
robust and 
common style

• Write operations 
complete one cycle 
after valid address, 
data, and en_wr = 1 
are present at the 
inputs

Memory

data_wraddr_wr en_wr
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Memory Pipelining/Timing
Reads

• Two main timing models 
are common for RAM 
reads: (left) asynchronous
(straight through 
combinational), and 
(right) synchronous with 
one cycle latency from 
addr_rd to valid data_rd

• The two synchronous 
models operate the same 
except when considered 
with the timing of writes 
to the same address

Memory

addr_rd

data_rd

Memory

data_rd

addr_rd

Memory

data_rd

addr_rd
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Simultaneous Write and Read 
Operations

• What is the read data when a read and 
write are performed to the same 
address? Good question! It depends on 
the specific circuits used in the 
memory. There are several possibilities:
– The “old” data existing in the previous 

cycle

– The “new” data being currently written

– “Don’t care” – this means it could be old, 
new, or some bits from each

Memory
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Simultaneous Write and Read 
Operations

• Example: M9K block 
RAMs with various 
port configurations 
and various selectable 
simultaneous 
write/read 
characteristics

• Selectable “old” or 
“new” from a single 
port is likely 
implemented by the 
order the RAM 
performs the two 
operations

Intel MAX 10 Embedded Memory User Guide, page 20

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-10/ug_m10_memory.pdf
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Memory Pipelining/Timing
Timing Style 2

• Style 2: Register is 
in the middle of the 
memory array

• Memories built 
with individual 
FFs for memory 
cells effectively 
contain a pipeline 
register across the 
middle of the 
entire memory 
array

reg regreg …

reg regreg …

reg regreg …
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or 
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clk
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Memory Pipelining/Timing
Timing Style 2

• The built-in pipeline 
stage is somewhere 
in the middle of the 
memory block

• A well-balanced 
system would 
therefore place a 
reduced amount of 
logic before and after 
the memory array to 
maintain a high clock 
frequency

Memory Memory

logic

logic

logic
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Block Diagram of a FF-based Memory with an 
Asynchronous (Combinational) Read Port

• There is only a 
combinational logic 
delay from the read 
address to the read data

• This block diagram is not 
a valid “pipelined block 
diagram” and would 
therefore be confusing to 
use to design a pipeline

• A simultaneous read and 
write to the same address 
will result in the read 
returning the old data, 
keeping in mind that the 
read occurs in a single cycle

…

reg [15:0]    mem [0:127];

wire [15:0]    rd_data;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

end

assign rd_data = mem[rd_addr];

…

rd_data
wr_data

wr_addr

wr_en

rd_addr

decoder 

and other 

logic
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Block Diagram of a FF-based Memory with a 
Synchronous Read Port

• There is a single-cycle 
delay from the read 
address to the read data

• This block diagram is a 
valid “pipelined block 
diagram” but is perhaps 
not the desired circuit

• A simultaneous read and 
write to the same address 
will result in the read 
returning the new data

…

reg [15:0]    mem [0:127];

reg [15:0]    rd_data;

reg [10:0]    rd_addr_p2;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

rd_addr_p2 <= #1 rd_addr;

end

assign rd_data = mem[rd_addr_p2];

…

rd_data
wr_data

wr_addr

wr_en

rd_addr

decoder 

and other 

logic

rd_addr_p2
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Block Diagram of a FF-based Memory 
with a Synchronous Read Port

• There is a single-cycle 
delay from the read 
address to the read data

• A simultaneous read and 
write to the same address 
will result in the read 
returning the old data

…

reg [15:0]    mem [0:127];

reg [15:0]    rd_data;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

rd_data <= #1 mem[rd_addr];

end

…

rd_data
wr_data

wr_addr

wr_en

rd_addr

decoder 

and other 

logic

• This diagram is not a valid 
“pipelined block diagram” 
and would be confusing to 
use to design a pipeline

– The signal rd_addr crosses a 
vertical line of registers without 
being registered which violates 
the diagram’s fundamental 
definition
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Block Diagram of a FF-based Memory 
with a Synchronous Read Port

• The read and write operations are in many ways independent; they interact 
only through the central memory cell array

• Another reasonable approach is to split the memory block diagram into two 
parts and draw the two halves in different sections of the system

– “Hazards” of interactions between writes and reads are considered separately, such as with 
pipeline diagrams when designing processors

…

wr_data

wr_addr

wr_en

decoder 

and other 

logic

…

…

rd_data

rd_addr

INSTR.

FETCH

DEC-

ODE

EXEC MEM WRITE 

BACK
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Pipelined Block Diagram of a FF-based 
Memory with a Synchronous Read Port

• This is a valid “pipelined 
block diagram” of a FF-based 
memory with a synchronous 
read port and is the one you 
should use

• Internal cell array bits (gray 
lines) flow right to left and 
are not pipelined (registered)

…

reg [15:0]    mem [0:127];

reg [15:0]    rd_data;

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[wr_addr] <= #1 wr_data;

end

rd_data <= #1 mem[rd_addr];

end

…

rd_data

wr_data

wr_addr

wr_en

rd_addr

decoder 

and other 

logic
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ROMs – 1) Synthesized from Std Cells
(A Combinational Circuit)

• Small ROMs can be 
efficiently 
synthesized
from standard cells

• Implementations are 
more efficient if the 
data is less random 
in an information-
theory sense

– Ex: 10-bit input, 
out=1 if input/4 is 
an integer

• It is advisable to 
generate tables from 
a program such as 
matlab

// todo: add “default” case for safety

always @(input) begin

case (input)

4'b0000: begin  real=8'b01000000; imag=8'b00000000;  end  // angle = 0.00000

4'b0001: begin  real=8'b00111011; imag=8'b00011000;  end  // angle = 0.12500

4'b0010: begin  real=8'b00101101; imag=8'b00101101;  end  // angle = 0.25000

4'b0011: begin  real=8'b00011000; imag=8'b00111011;  end  // angle = 0.37500

4'b0100: begin  real=8'b00000000; imag=8'b01000000;  end  // angle = 0.50000

4'b0101: begin  real=8'b11101000; imag=8'b00111011;  end  // angle = 0.62500

4'b0110: begin  real=8'b11010011; imag=8'b00101101;  end  // angle = 0.75000

4'b0111: begin  real=8'b11000101; imag=8'b00011000;  end  // angle = 0.87500

4'b1000: begin  real=8'b11000000; imag=8'b00000000;  end  // angle = 1.00000

4'b1001: begin  real=8'b11000101; imag=8'b11101000;  end  // angle = 1.12500

4'b1010: begin  real=8'b11010011; imag=8'b11010011;  end  // angle = 1.25000

4'b1011: begin  real=8'b11101000; imag=8'b11000101;  end  // angle = 1.37500

4'b1100: begin  real=8'b00000000; imag=8'b11000000;  end  // angle = 1.50000

4'b1101: begin  real=8'b00011000; imag=8'b11000101;  end  // angle = 1.62500

4'b1110: begin  real=8'b00101101; imag=8'b11010011;  end  // angle = 1.75000

4'b1111: begin  real=8'b00111011; imag=8'b11101000;  end  // angle = 1.87500

endcase

end

• This example table has:
– 4-bit input address

– 16-bit (8-bit + 8-bit complex) output
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ROMs – 1) Synthesized from Std Cells

• If applicable, matlab may be a good choice for a 
program to print the verilog table as plain text
– You will need several versions to get it right so rapid 

(re)generation is a huge time saver

– matlab has rock-solid common functions, rounding, etc.

– matlab has superb plotting capabilities for checking all sorts of 
characteristics such as bias, frequency response, etc.

– An automatically generated table is easy to adapt to other 
specifications such as binary word width, number format, etc. 
in case the problem specification changes

– Print everything between “case” and “endcase” then copy & 
paste the matlab output into your verilog file



© B. Baas 310

ROMs – 1) Synthesized from Std Cells

• This is the matlab code that generated the previously-shown 
lookup table

• Copy, Paste, Run, Change, Run!

% table_gen.m

% 2018/02/22 Last modified (BB)

fprintf(1, 'always @(theta) begin\n');

fprintf(1, '  case (theta)\n');

% Main loop, once for each possible input

for k=0:15

angle = 2 * pi * k / 16;

re    = cos(angle);

re    = round(re * 2^6);   % scale +1 -> 64 since max is +127; then round

im = sin(angle);

im = round(im * 2^6);   % scale +1 -> 64 since max is +127; then round

fprintf(1, '    4''b%s: begin  ', real2unsigned(k,4,0));

fprintf(1, 'real=8''b%s; ', real2twos(re,8,0));

fprintf(1, 'imag=8''b%s;  ', real2twos(im,8,0));

fprintf(1, 'end  ');

fprintf(1, '// angle = %f pi', angle/pi);

fprintf(1, '\n');

end

fprintf(1, '  endcase\n');

fprintf(1, 'end\n');
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Using Matlab for Lookup Table 
Generation

• Helpful matlab commands:
fprintf()

real2twos()

real2unsigned

help [matlab_command_name]
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ROMs – 2) FPGA Block RAM

• Larger ROMs on FPGAs can make
use of block RAMs whose contents
can be specified with a verilog
“initial” block

• Read operations are synchronous
and update the output port only
on the active edge of the clock
– There is now one clock cycle of delay 

from when addr_rd is valid to when the read output is valid

• The M9K memory blocks in Altera FPGAs work this way

• This is the only case when it is ok to break our rule of no 
initial blocks in hardware verilog!

reg [7:0]    rom [0:127];

// Yes, this is HW verilog

initial begin

rom[0] = 8’h35;

rom[1] = 8’h2E;

rom[2] = 8’hFF;

...

end

always @(posedge clk) begin

data_out <= #1 rom[addr_rd];

end


