
SINGLE-BIT MEMORIES
(FLIP-FLOPS)

Updated January 20, 2022

Semiconductor Memories

• “Single-bit” Memory (Foreground)

– Individual memory circuits that store a single bit of
information and have at least the following I/O ports:
1) data input and 2) data output

1. “Clock-less” latch

2. Transparent Level-Sensitive Latch

3. Edge-triggered Flip-Flop

• “Array” Memory (Background)

– Large memory circuit that stores many bits of information
organized into multiple words accessed by an address

1. SRAM

2. Multi-ported SRAM

3. DRAM

4. Flash

5. etc.

© B. Baas 192

G

S

R

clk

clk

© B. Baas 193

Instantiating Flip-Flops/Registers

• One way to build a FF/register (do not use this)
reg a;

always @(posedge clk) begin

a = a_c;

end

• The “=“ is a “blocking assignment” which
causes the simulator to “block” on an
assignment until the operation is completed,
then it moves to the next statement

• It makes a race condition possible
reg b, c;

always @(posedge clk) begin

b = a;

c = b;

end

– In this case, a races to c in one cycle!

a_c a

clk

b
c

clk

a

clk

D FF

© B. Baas 194

Instantiating Flip-Flops/Registers

• One solution would be to simply reorder the reg assignment
commands to eliminate the race

• a races to c in one cycle (broken)
reg b, c;

always @(posedge clk) begin

b = a;

c = b;

end

• a progresses to b and b to c in one cycle each as expected (ok)
reg b, c;

always @(posedge clk) begin

c = b; // reordered from above

b = a; // reordered from above

end

• Of course this is a terrible solution and
you should never use it. Besides being
very tedious and prone to errors, it will
not work with loops.

b
c

clk

a

clk

© B. Baas 195

Instantiating Flip-Flops/Registers

• The correct solution is to use a “non-blocking assignment”
written with “<=“ which causes the simulator to evaluate
the right side of the expression when the statement is
encountered, but the assignment of the left side is not done
until the end of that time step in “simulator time”

• With the verilog below, the registers perform as normal FFs
behave without a race regardless of their ordering
reg b, c;

always @(posedge clk) begin

b <= a;

c <= b;

end b
c

clk

a

clk

The key differentiator is the time

when the value b is sampled.

Here it is not “blocked” by the
previous assignment b<=a

© B. Baas 196

Single-Bit Memory Rule #1
(out of 9 total rules)

• Rule #1 (always follow in this class):
Use only edge-triggered flip-flops and never
transparent (clock level-sensitive) latches

• Edge-triggered flip-flops are generally robust
with regards to clocking

• Transparent latches are vulnerable to signals
racing through more than one latch during a
single clock pulse; solutions are generally non-trivial

– Requiring a minimum delay between latches works but adds area and power
dissipation

– Requiring a maximum pulse width on clocks (likely << 50%) can be problematic

– A robust but tedious solution is to use two clocks with different non-
overlapping phases, and require consecutive latches to use clocks of differing
phases

G

clk_phase1

clk_phase2

© B. Baas 197

Single-Bit Memory Rule #2

• Rule #2 (always follow in this class):
For combinational logic always blocks, always use
blocking assignments (“=“)

// OR gate

always @(a or b) begin

c = a | b;

end

© B. Baas 198

Single-Bit Memory Rule #3

• Rule #3 (always follow in this class):
For flip-flop (register) always blocks, always
use non-blocking assignments (“<=“)

always @(posedge clk) begin

sum <= #1 c_sum;

r_product <= #1 product;

end

© B. Baas 199

Single-Bit Memory Rule #4

• Rule #4 (always follow in this class):
Add “#1” to give one unit of clock-to-Q delay to
increase waveform readability
– Synthesis tools have no way to implement a #1 delay so they

typically give a warning saying they can not add the delay
and that the tool has ignored it

– This warning can be ignored (the only warning that can be
automatically ignored!)

– Interestingly, Quartus does
not give a warning clk

sum_c

sum
#1

© B. Baas 200

Single-Bit Memory Rule #5

• Rule #5 (really a guideline):
Normally do not include any logic in flip-flop
declarations. You will be tempted to include functions
such as resets, initializations, and counter
incrementing. Try to resist but it is ok if logic is simple.

// Flip-flop declarations

always @(posedge clock) begin

state <= #1 state_c;

count <= #1 count_c;

if (reset == 1’b1 && state_pipe3 != 8’hB2) begin

state <= #1 4’b0000; // init state

end

end

© B. Baas 201

Single-Bit Memory Rule #6

• Rule #6 (really a
suggestion):

• For large designs, it is
usually clearer to group
related combinational
logic and FFs in
separate areas of the
module

// Block 1

[combinational logic]
always @(posedge clock) begin

count <= #1 count_c;

...

end

// Block 2

[combinational logic]
always @(posedge clock) begin

data_r <= #1 data;

...

end

// Block 3

[combinational logic]
always @(posedge clock) begin

cat <= #1 mouse;

...

end

Preview of 2 Clock-Related Rules

• These will be covered in more detail in the Clock
section

1) Only clock signals may connect to flip-flop or latch
clock inputs

2) Clock signals may not connect to any node other
than a flip-flop or latch clock input
– No logic gate inputs

– No flip-flop or latch inputs other than the clock input

3) There are only a few exceptions

© B. Baas 202

Rule #7

© B. Baas 203

Rule #8: Signal Naming Conventions

• It is helpful to have conventions for signal names
– Easier for others to understand your code

– Easier for YOU to understand your code

• Add a suffix to signal names to indicate they are from
an earlier pipeline stage or a later pipeline stage

• *_c – input to a register (e.g., sum_c)

• *_r – output of a register (e.g., sum_r)

(combinational logic

version of sum) sum_c sum

inputA inputA_r (registered version

of inputA)

© B. Baas 204

Signal Naming Conventions

• Another possibility I have seen is to add a prefix but
this has the possibly-negative feature that associated
signals are not adjacent when sorted alphabetically

• c_* – input to a register (e.g., c_sum)

• r_* – output of a register (e.g., r_sum)

c_sum sum

inputA r_inputA

© B. Baas 205

Signal Naming Conventions

• If a signal is pipelined across multiple pipe stages, it
is probably a good idea to indicate that in the signal’s
name—for example with a suffix such as _pipeX

• inA_pipe1 – inA signal in pipeline stage 1

© B. Baas 206

Reset-able and Enable-able
Registers

• Sometimes it is convenient or necessary to have flip-flops with
special inputs like reset and enable

• When designing flip-flops/registers, it is ok (possibly required)
for there to be cases where the always block is entered, but the
reg is not assigned—such as when a FF is disabled

• No fancy code, just make it work

• Normally use synchronous reset instead of asynchronous reset
(Rule #9 later)

D
Qreset

D Q

enable

D
Qpreset OR

1

0

© B. Baas 207

Reset-able Registers

• Two example FFs with active-high reset

• The code also leaves out begin-end statements which is not ideal

• This code “bends” Guideline #5

always @(posedge clk) begin

if (reset == 1’b0)

out <= #1 D;

else

out <= #1 1’b0;

end

always @(posedge clk) begin

if (reset == 1’b1)

out <= #1 1’b0;

else

out <= #1 D;

end

© B. Baas 208

Reset-able Registers

• Example FF registers with reset

• This code bends Guideline #5

reg out;

reg [7:0] count;

reg [23:0] rgb;

always @(posedge clk) begin

out <= #1 D;

count <= #1 count_c;

rgb <= #1 color24;

if (reset == 1’b1) begin

out <= #1 1’b0;

count <= #1 8’b0000_0000; // ideally put reset elsewhere

// assume rgb does not need to be reset

end

end

© B. Baas 209

Preset-able Registers

• Example FF with preset

• This code bends Guideline #5

always @(posedge clk) begin

out <= #1 D;

if (preset == 1’b1) begin

out <= #1 1’b1;

end

end

© B. Baas 210

Enable-able Registers

• Example FF with reset

• This is not combinational logic so it is not necessary
that all outputs are set in every possible path through
the always block

• This code bends Guideline #5
always @(posedge clk) begin

if (enable == 1’b1) begin

out <= #1 D;

end

end

• Compare with Common Mistake #4

© B. Baas 211

Reset-able and Enable-able
Registers

• Example FF with reset and enable (reset has priority)

always @(posedge clk) begin

if (reset == 1’b1) // highest priority

out <= #1 1’b0;

else if (enable == 1’b1)

out <= #1 c_out;

// ok if no assignment (out holds value)

end

reset enable Action

0 0 Do nothing

0 1 D Flip-Flop

1 0 Reset? or Do nothing?

1 1 Reset, Q=0

reset enable Action

0 0 Do nothing

0 1 D Flip-Flop

1 0 Reset? or Do nothing?

1 1 Reset, Q=0

© B. Baas 212

Reset-able and Enable-able
Registers

• Example FF with reset and enable (enable has priority)

always @(posedge clk) begin

if (enable == 1’b1) begin // highest priority

if (reset == 1’b1)

out <= #1 1’b0;

else

out <= #1 c_out;

end

// It is ok if there is no assignment to “out” in some

// cases (out is not assigned when enable==0 in which

// case out holds its value). Recall that this is never

// ok for combinational logic.

end

© B. Baas 213

Resets Within a Large Datapath

• Use reset-able FFs only where truly needed
– Reset-able FFs are a little larger and higher power

– Requires the global routing of the high-fanout reset signal

cos()

x +
reset only

these two

registers, but

now reset

must be

enabled for

at least 3

clock cycles

reset

R

R

Asynchronous Resets

• Asynchronous resets will react to any pulse, even a very short
“glitch” in the middle of a clock period

• What if the reset signal comes directly from combinational logic
where glitches are common?

• What if a glitch comes from capacitive coupling or inductive
coupling of wires?

• How to test in a big chip?

• They utilize a different circuit than what a synchronous reset
uses

• However they are needed in:

– clock generation

– asynchronous interface logic

• Rule #9: Use only synchronous
resets (always follow in this class)

© B. Baas 214

clk

reset

Q

