
FLOATING POINT

© B. Baas 149

Floating Point Number Components

• sign (optional) determines the sign of the overall number

• mantissa can take many forms

– unsigned, sign magnitude, 2’s complement

– integer, full fractional < 1, mixed integer.fractional

• base is normally fixed in a particular usage and is commonly 2

– it is not explicitly stored or transmitted

– other common values include a power-of-2 and 10

• exp can also take the same forms

– unsigned, sign magnitude, 2’s complement

– integer, full fractional < 1, mixed integer.fractional

• exp_sign (optional) determines the sign of the exponent

• bias (optional) has advantages in enabling faster comparisons
between floating point numbers

𝑠𝑖𝑔𝑛 × 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 × 𝑏𝑎𝑠𝑒𝑒𝑥𝑝_𝑠𝑖𝑔𝑛×(𝑒𝑥𝑝−𝑏𝑖𝑎𝑠)

Floating Point Arithmetic

• Multiplication
– Relatively straightforward because the mantissa and exponent

can be processed independently

• Addition and Subtraction
– More complex because the mantissas require alignment

before addition or subtraction can begin

• All arithmetic operations
– Require normalization after the arithmetic is complete

© B. Baas 150

© B. Baas 151

Floating Point
Storage and Transmittal

• mantissa * base exponent

sign * mantissa * base exponent

• We normally never explicitly store or transmit the base;
only the other values:

(MMMMMMMM, EEEEE)
(SMAN, MMMMMMMM, EEEEE)
(SMAN, MMMMMMMM, SEXP, EEEEE)

• For example, if the exponent is stored as a 4-bit
2’s complement integer:
00010. * 2^0 (00010,0000)

00101. * 2^(-1) (00101,1111)

Floating Point Example
All 8-bit Unsigned Numbers

a) fixed-point integer
XXXXXXXX.
range [0–255]
resolution or smallest step size = 1

b) fixed-point “4.4 format” fractional
XXXX.XXXX
range [0 – 15 15/16] = [0 – 15.9375]
resolution = 1/16 = 0.0625

c) floating-point 4-bit integer mantissa, 4-bit 2’s complement
exponent
[0 – 15] × 2[–8 – +7]

When exp = –8 range [0 – 0.0586] resolution 0.0039
When exp = 0 range [0 – 15] resolution 1
When exp = +7 range [0 – 1920] resolution 128

© B. Baas 152

© B. Baas 153

Normalization example with an
Integer Mantissa

• Normalized floating point numbers contain no extra
(useful) bits at the MSB end of the mantissa
– Examples for 2.7510 with an unsigned 5-bit integer mantissa:
00010. * 2^0 not normalized, or “denormalized”
00101. * 2^(-1) not normalized, or “denormalized”
01011. * 2^(-2) not normalized, or “denormalized”
10110. * 2^(-3) normalized

– A good starting point in such problems is to first consider the
original value in fixed point which is 10.11 or 010.1100 etc.,
in this case

– To keep this example simple, bits in the original value of 2.75
that do not fit into the mantissa (i.e., the first two cases) are
dropped or truncated, which is not as accurate as rounding

© B. Baas 154

Normalization example with a
0.5 Fractional Mantissa

• Normalized floating point numbers contain no extra
(useful) bits at the MSB of the mantissa
– Examples for 2.7510 with an unsigned 5-bit “0.5 format”

fractional mantissa:
.00010 * 2^(+5) not normalized, or “denormalized”
.00101 * 2^(+4) not normalized, or “denormalized”
.01011 * 2^(+3) not normalized, or “denormalized”
.10110 * 2^(+2) normalized

– If the exponent is stored as a 4-bit 2’s complement integer,
these 4 examples would be stored as:
(MMMMM,EEEE)

(00010,0101)

(00101,0100)

(01011,0011)

(10110,0010)

© B. Baas 155

Normalization example with a
2’s Complement Mantissa

• Normalized floating point numbers contain no extra
(useful) bits at the MSB end of the mantissa
– Examples for +2.7510 with a 2’s complement 5-bit integer

mantissa:
00010. * 2^0 not normalized, or “denormalized”
00101. * 2^(-1) not normalized, or “denormalized”
01011. * 2^(-2) normalized
10110. * 2^(-3) Broken! Lost sign bit

© B. Baas 156

Normalization example with a
2’s Complement Mantissa

• Normalized floating point numbers contain no extra
(useful) bits at the MSB end of the mantissa
– Examples for –2.7510 with a 2’s complement 5-bit integer

mantissa

– First calculate the value in fixed point:
–2.7510 = 101.010 = (-4)+(1)+(1/4)

– Then calculate cases with various exponent values:
11101. * 2^0 not normalized, or “denormalized”
11010. * 2^(-1) not normalized, or “denormalized”
10101. * 2^(-2) normalized
01010. * 2^(-3) Broken! Lost sign bit

