FLOATING POINT
<--->
FIXED POINT
CONVERSION
Floating Point → Fixed Point Conversion

• If the \(\text{exp} \) is unsigned, the shifter shifts only to the left
• If the \(\text{exp} \) is signed, the shifter must shift to the left and right
• Example:

\[
01011. \times 2^2
\]
\[
01011. \ll 2
\]
\[
000101100.
\]
Fixed Point → Floating Point Conversion

- Leading 0s/1s detector finds the optimum place to begin selecting bits for the mantissa
- Common pitfall: If the mantissa is signed, its sign bit(s) must be maintained!
Fixed Point \rightarrow Floating Point Conversion

- Fixed-to-float conversion example (*positive* input)
 - Input: 8-bit 2’s complement (signed) integer
 - Output: 4-bit 2’s complement (signed) mantissa

a) integer mantissa

\[
\begin{array}{cccccccccc}
S & & & & & & & & & \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0.
\end{array}
\quad \rightarrow \quad
\begin{array}{cccccccccc}
0 & 1 & 1 & 0.
\end{array}
\quad \Rightarrow \quad
0 \times 2^{001} = 6 \times 2^1
\]

b) fractional “0.4 format” mantissa

\[
\begin{array}{cccccccccc}
S & & & & & & & & & \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0.
\end{array}
\quad \rightarrow \quad
\begin{array}{cccccccccc}
0 & 1 & 1 & 0.
\end{array}
\quad \Rightarrow \quad
0.375 \times 2^5
\]
Fixed Point \rightarrow Floating Point Conversion

- Fixed-to-float conversion example (*negative* input)
 - Input: 8-bit 2’s complement (signed) integer
 - Output: 4-bit 2’s complement (signed) mantissa

 a) integer mantissa

 $$\begin{array}{c}
 1 1 0 1 0 0 0 1. \\
 -47
 \end{array} \rightarrow \begin{array}{c}
 1 0 1 0 \cdot 2^{(011)} \\
 = -6 \cdot 2^{3}
 \end{array}$$

 b) fractional “2.2 format” mantissa

 $$\begin{array}{c}
 1 1 0 1 0 0 0 1. \\
 -47
 \end{array} \rightarrow \begin{array}{c}
 1 0.1 0 \cdot 2^{(101)} \\
 = -1.5 \cdot 2^{5}
 \end{array}$$
Fixed Point \rightarrow Floating Point Conversion
Special Cases

• **Example 1:** converting a fixed-point zero:
 00000000
 - Clearly, the selection of mantissa bits does not matter \rightarrow it will be all zeros
 - But then what should the exponent be?
 • In absolute terms it does not matter
 • Choose whatever makes the hardware **more regular** and simpler

• **Example 2:** converting a string of 1’s to FloatPt with a 4-bit mantissa:
 11111111
 - We have at least two main approaches to selecting the mantissa bits which in general do not affect accuracy
 • 1) Choose mantissa after removing max number of redundant sign bits
 $1111. \times 2^0 = -1 \times 1 = -1$
 • 2) Choose mantissa to preserve as many bits as possible while removing the max number of redundant sign bits
 $1000. \times 2^{(-3)} = -8 \times (1/8) = -1$
 • Choose whatever makes the hardware **more regular** and simpler