FLOATING POINT

<---->

FIXED POINT

CONVERSION
Floating Point → Fixed Point Conversion

- If the exp is unsigned, the shifter shifts only to the left
- If the exp is signed, the shifter must shift to the left and right
- Example:

 \[01011. \times 2^2 \]

 \[01011. \ll 2 \]

 \[000101100. \]
Fixed Point \rightarrow Floating Point Conversion

- Leading 0s/1s detector finds the optimum place to begin selecting bits for the mantissa.
- Common pitfall: If the mantissa is signed, its sign bit(s) must be maintained!

```
fixed point

leading 0s/1s detector

± offset

shifter

± offset

exp

mantissa
```
Fixed Point → Floating Point Conversion

- Fixed-to-float conversion example (*positive* input)
 - Input: 8-bit 2’s complement (signed) integer
 - Output: 4-bit 2’s complement (signed) mantissa

 a) integer mantissa

 \[
 \begin{array}{c|cccccc}
 S & 0 & 0 & 0 & 0 & 1 & 1 \\
 \hline
 & 0 & 1 & 1 & 0 & . & \rightarrow \\
 & 12 & = & 6 & \times & 2^1 \\
 \end{array}
 \]

 b) fractional “0.4 format” mantissa

 \[
 \begin{array}{c|cccccc}
 S & 0 & 0 & 0 & 0 & 1 & 1 \\
 \hline
 & .0 & 1 & 1 & 0 & \rightarrow \\
 & 12 & = & 0.375 & \times & 2^5 \\
 \end{array}
 \]
Fixed Point → Floating Point Conversion

• Fixed-to-float conversion example (negative input)
 – Input: 8-bit 2’s complement (signed) integer
 Output: 4-bit 2’s complement (signed) mantissa

 a) integer mantissa

 \[
 \begin{align*}
 \text{s} & \quad 4 \\
 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1. \quad \rightarrow \quad 1 & 0 & 1 & 0. \times 2^{(011)} & \quad \% 2^3 \\
 -47 & \quad = & \quad -6 & \times 2^3
 \end{align*}
 \]

 b) fractional “2.2 format” mantissa

 \[
 \begin{align*}
 \text{s} & \quad 4 \\
 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1. \quad \rightarrow \quad 1 & 0.1 & 0 \times 2^{(101)} & \quad \% 2^5 \\
 -47 & \quad = & \quad -1.5 & \times 2^5
 \end{align*}
 \]
Fixed Point \rightarrow Floating Point Conversion

Special Cases

- **Example 1:** converting a fixed-point zero

 \[
 00000000
 \]

 - Clearly, the selection of mantissa bits does not matter \rightarrow it will be all zeros

 - But then what should the exponent be?

 - In absolute terms it does not matter

 - Choose whatever makes the hardware **more regular** and simpler

- **Example 2:** converting a string of 1’s to FloatPt with a 4-bit mantissa

 \[
 11111111
 \]

 - We have at least two main approaches to selecting the mantissa bits which in general do not affect accuracy

 - 1) Choose mantissa after removing the max number of redundant sign bits

 \[
 1000. \times 2^{(-3)} = -8 \times (1/8) = -1
 \]

 - 2) Choose mantissa to preserve as many bits as possible while removing the max number of redundant sign bits

 \[
 1111. \times 2^0 = -1 \times 1 = -1
 \]

 - Choose whichever method makes the hardware **more regular** and simpler