
FIR FILTER HARDWARE
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FIR Filter Review

• FIR filters are calculated by convolution

𝑦(𝑛) =  

𝑘=−∞

+∞

𝑥 𝑘 ℎ(𝑛 − 𝑘)
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• y(n) = xn h2 + xn+1 h1 + xn+2 h0

• A “full” non-iterative direct-form 
FIR filter with a throughput of 
one sample per cycle adds the 
products of each coefficient times 
a delayed version of the input
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FIR Filter Example

• For direct-form FIR filters 
which add multiple products 
into an output sum, an 
efficient implementation 
adds all products in a single 
large multiple-input adder 
using the efficient carry-save 
adders  carry-propagate 
adder structure
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FIR Filter Example

• In the common case 
when the h coefficients 
are fixed, there is of 
course no change and 
no downside if the 
“always zero” partial 
products are removed
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FIR Filter Example

• In the single large multiple-input 
adder, partial products from all 
filter taps get merged with each 
other in one large “pile of dots” 
where we no longer need to 
distinguish from which x(n) and 
h(n) a dot came

• The dots are added with a single 
carry-save adder structure in a 
manner similar to how multiplier 
partial-products are reduced
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FIR Filter Example

• A carry-propagate 
adder finally reduces 
the y filter output to a 
single word

4:2 and 3:2

CPA

y(n)
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FIR Filter HW Reduction

• If we can scale all coefficients by 
the same amount

– It may be possible to reduce a 
filter’s complexity significantly 
if we can find h(n) values with 
more zero partial products

– The frequency response will be 
unchanged

– The overall filter output 
magnitude is changed

– Must watch out for:

• Overflow—if the filter’s output 
is scaled larger

• Quantization noise—if the 
filter’s output is scaled smaller

x(n+2)
x(n+2)

0
0

x(n+2)

0

0
x(n+1)

0
0

0

x(n+1)

x(n)
x(n)

0
0

0

0

x(n)

x(n+1)

x(n+2)

x(n+3)

h(0)

h(1)

h(2)

y(n+2)

+



© B. Baas 298

FIR Filter Scaling

• If   coeffs = [9  18  45  18  9]

note that  0.889 x coeffs =  [8  16  40  16  8]

FIR

FIR

x 0.889

Partial products: 2          2           4          2         2

Partial products: 1          1           2          1         1

12 partial products

6 partial products
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FIR Filter Scaling

• Often, scaling of a filter can be 
– ignored, or

– accommodated or compensated elsewhere in the signal path

FIR AInitial

Ideal #1

Ideal #2

Hopefully 
not necessary
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FIR Output Range Issues

• Worst-case inputs: maximum pos/neg samples

– Signs of input samples match coefficient signs

– Signs of input samples are opposite of coefficient signs

• As filter lengths increase, the peak-to-average ratio can get very 
large. Possible solutions include:

– Widen the widths of all words so that the full range output can be 
accommodated

• Can be unnecessary and wasteful of hardware and energy

– Overflow

• Almost certainly risky and a very bad idea

– Saturate

• Some distortion if the input is greater than the saturation level

– Compression

• Lower distortion when the signal enters saturation but the signal is 
distorted before it reaches the saturation level


