
FIR FILTER HARDWARE

© B. Baas

FIR Filter Review

• FIR filters are calculated by convolution

 𝑦(𝑛) =

𝑘=−∞

+∞

𝑥 𝑘 ℎ(𝑛 − 𝑘)

x(n+2)
x(n+2)

0
0

x(n+2)

0

0
x(n+1)

0
0

0

x(n+1)

x(n)
x(n)

0
0

0

0

x(n)

x(n+1)

x(n+2)

x(n+3)

h(0)

h(1)

h(2)

y(n+2)

+

• y(n) = xn h2 + xn+1 h1 + xn+2 h0

• A “full” non-iterative direct-form
FIR filter with a throughput of
one sample per cycle adds the
products of each coefficient times
a delayed version of the input

© B. Baas

FIR Filter Example

• For direct-form FIR filters
which add multiple products
into an output sum, an
efficient implementation
adds all products in a single
large multiple-input adder
using the efficient carry-save
adders → carry-propagate
adder structure

x(n+2)
x(n+2)

0
0

x(n+2)

0

0
x(n+1)

0
0

0

x(n+1)

x(n)
x(n)

0
0

0

0

x(n)

x(n+1)

x(n+2)

x(n+3)

h(0)

h(1)

h(2)

y(n+2)

+

© B. Baas

FIR Filter Example

• In the common case
when the h coefficients
are fixed, there is of
course no change and
no downside if the
“always zero” partial
products are removed

x(n+2)
x(n+2)

x(n+2)

x(n+1)

x(n+1)

x(n)
x(n)

h(0)

h(1)

h(2)

© B. Baas

FIR Filter Example

• In the single large multiple-input
adder, partial products from all
filter taps get merged with each
other in one large “pile of dots”
where we no longer need to
distinguish from which x(n) and
h(n) a dot came

• The dots are added with a single
carry-save adder structure in a
manner similar to how multiplier
partial-products are reduced

x(n+2)
x(n+2)

x(n+2)

x(n+1)
x(n+1)

x(n)
x(n)

© B. Baas

FIR Filter Example

• A carry-propagate
adder finally reduces
the y filter output to a
single word

4:2 and 3:2

CPA

y(n)

© B. Baas

FIR Filter HW Reduction

• If we can scale all coefficients by
the same amount

– It may be possible to reduce a
filter’s complexity significantly
if we can find h(n) values with
more zero partial products

– The frequency response will be
unchanged

– The overall filter output
magnitude is changed

– Must watch out for:

• Overflow—if the filter’s output
is scaled larger

• Quantization noise—if the
filter’s output is scaled smaller

x(n+2)
x(n+2)

0
0

x(n+2)

0

0
x(n+1)

0
0

0

x(n+1)

x(n)
x(n)

0
0

0

0

x(n)

x(n+1)

x(n+2)

x(n+3)

h(0)

h(1)

h(2)

y(n+2)

+

© B. Baas

FIR Filter Scaling

• If coeffs = [9 18 45 18 9]
note that 0.889 x coeffs = [8 16 40 16 8]

FIR

FIR

x 0.889

Partial products: 2 2 4 2 2

Partial products: 1 1 2 1 1

12 partial products

6 partial products

© B. Baas

FIR Filter Scaling

• Often, scaling of a filter can be
– ignored, or

– accommodated or compensated elsewhere in the signal path

FIR AInitial

Ideal #1

Ideal #2

Hopefully
not necessary

FIR

× 0.889
A

FIR

× 0.889
A’

FIR

× 0.889
× 1.125 A

© B. Baas

FIR Output Worst-Case

• Worst-case inputs: maximum pos/neg samples

– Signs of input samples match coefficient signs

– Signs of input samples are opposite of coefficient signs

© B. Baas

FIR Output Growth

• As filter lengths increase, the peak-to-average ratio can get very
large. Possible solutions include:

– Widen the widths of all words so that the full range output can
be accommodated

• Can be unnecessary and wasteful of hardware and energy

– Overflow

• Almost certainly risky and a very bad idea

– Saturation or Compression

	Slide 221: FIR FILTER HARDWARE
	Slide 222: FIR Filter Review
	Slide 223: FIR Filter Example
	Slide 224: FIR Filter Example
	Slide 225: FIR Filter Example
	Slide 226: FIR Filter Example
	Slide 227: FIR Filter HW Reduction
	Slide 228: FIR Filter Scaling
	Slide 229: FIR Filter Scaling
	Slide 230: FIR Output Worst-Case
	Slide 231: FIR Output Growth

