FFT

* There are many ways to decompose an FFT
[Rabiner and Gold]

* The simplest ones are radix-2
 Computation made up of radix-2 butterflies

B Y=A-BW

FFT Dataflow Diagram

e Dataflow diagram

- N=64

— radix-2

— 6 stages of
computation

Memory
Locations

4

12
16
20
24
28
32
36
40
44
48
52
56
60
63

Input

stage0

stagel

stage2

stage3

staged

stageb

Output

Radix 2, 8-point FFT

ssssss

Radix 2, 16-point FFT

:%Qs}

N\

5
W

/.

\
X
>

¢

\
4

¢

Wy
&

ssssss

K
§
‘
K

.J

X
G
o
e
S
e
o
o
o

ssssss

10

12

14

16

18

20

22

24

26

28

30
31

stage0

Radix 2, 32-point FFT

|

%%
%%
%
0
8

&S

S X
A0
O
<Q\\\\4§§$$%o
:¢¢¢¢¢oo

i
:{

il
i

OO
o’t‘&’:’:’:‘:’:’:’:‘:’t
RSB
GBS
= LN,
o N
- QOOOO00
SIS *‘~.|.’ 2 B
V \ XXX X
LK AK K K > 4
00000,
.0 0. 0.0.0.¢
0‘0’0"0’ ’0
«A //%:0:0
SSIELS / X
/%‘
— v
stagel stage2 stage3 staged

*a
e,
-

F *...‘“‘.""‘."*’.".ﬂ“ﬂ. 0"“”’*.‘MMWWWW""."*OQWWM“’

LL R SRR

m R R RS R
AN BB BN OB

O UUXXXX) UXXKAX) (AXXXXK) UXXKXKX)

_Dl « .,.”.../JJ .#H../J « ..“.J% « ..“u/J
i\ ...\ | ...\ A ...\ /...
A4 QI 44 G 4 4 G 4 S 4 4 S 4 4 G 44 4 GO 4 §
... .0. .0. .‘. .‘. .‘. .‘. ...

Radix 2, 64

stagel stage?2 stage3 staged stageb

stage0

t FFT

-poin

AMAMALLLLLEL

(U]

A
I

N O O W N D T O W
W O o T o D

o — &N Y © M~ ® © N T W
- O T W O O . - - - - - NN o™

Radix 2, 256

stage stage2 stage3 staged stage5 stage6 stage?

stage0

Radix 4, 16-point FFT

N7

0000000000

000000

— — — — — —

—

Qo
=]
2]

o
=]
4]
—
o

t FFT

-poin

\)
e

s

\&,

Radix 4, 64

./

12

\
Sy
T

16

55

X

5
50
///l/i/;..%m““m
o

o

Y

W

%

&

S

S
L7
4

s
.

LA

i

L7

ribg

SR

\&H vy Ay Ny
At o 5
s
’ (AR
R

20

i

}
)
i
i

a:;

24

\

| \

28

0

32

/

:

36

\

_ &
st
e
ity

\Q

40

i

il

44

48

.

52

_\

i
/

il

56

60
63

stage2

stagel

stage0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

255

Radix 4, 256-point FFT

stage0

stagel

stage2

stage3

Radix 2, Decimation-In-Time (DIT)

* Input order “decimated” —needs bit reversal

* QOutput in order
e Butterfly: Critical path:
B W

A >< X=A+BW
B Y=A-BW

B. Baas

452

Radix 2, Decimation In Frequency
(DIF)

e Inputin order

* QOutput “decimated” —needs
bit reversal

e Butterfly:
— Two CPAs
— Wider multiplier

A >< X=A+B
B Y=(A-B)W

Critical path:
A B

B. Baas

453

Radix 4, DIT Butterfly

* Decimation in Time (DIT) or Decimation in
Frequency (DIF)

A V
B W
C X

Bit-Reversed Addressing

 Normally:

— DIT: bit-reverse inputs before processing

— DIF: bit-reverse outputs after processing

BIT REVERSAL

,,,,,,,,,,

e Reverse addressing bits for read/write of data

000 (0) >
001 (1) 2>
010 (2) 2>
011 (3) 2
100 (4) >
101 (5) >
110 (6) >
111 (7) >

000 (0)

Word 0 does not move location
Original word 1 goes to location 4
Word 2 does not move location
Original word 3 goes to location 6
Original word 4 goes to location 1
Word 5 does not move location
Original word 6 goes to location 3
Word 7 does not move location

,,,,,

BIT REVERSAL

Addressing In Matlab
(Especially helpful for FFTs)

e Matlab

— Matlab can not index arrays with index zero!

* In matlab, do address calculations normally

- AddrA =0,2,4, ...
AddrB =1,3,5, ...

e then use pointers with an offset of one whenever
indexing arrays
— AddrA=...... ;
AddrB=...... ;
A =data(AddrA+1);
B = data(AddrB+1);

Ae;ta(AddrAH) =X;
data(AddrB+1)=Y;

Higher Radices

e Radix 2 and radix 4 are certainly the most popular

e Radix 4 is on the order of 20% more efficient than
radix 2 for large transforms

e Radix 8 is sometimes used, but longer radix
butterflies are not common because additional
efficiencies are small and added complexity is non-
trivial (especially for hardware implementations)

[. Common-Factor FFTs

e Key characteristics

— Most common class of FFTs

— Also called Cooley-Tukey FFTs

— Factors of N used in decomposition have common factor(s)
e A)Radix-r

— N =7 where k is a positive integer

— Buttertlies used in each stage are the same

— Radix-r butterflies are used

— N/r buttertlies per stage

— k=Ilog, N stages

[. Common-Factor FFTs

e B) Mixed-radix
— Radices of component butterflies are not all equal
— More complex than radix-r
— Isnecessary if N # X

— Example
e N=32
* Could calculate with two radix-4 stages and one radix-2 stage

II. Prime-Factor FFTs

The length of transforms must be the product of
relatively prime numbers

This can be limiting, though it is often possible to
find lengths near popular power-of-2 lengths
(e.g., 7 x11 x 13 =1003)

Their great advantage is that they have no Wy,
twiddle factor multiplications

Irregular sorting of input and output data
Irregular addressing for butterflies

III. Other FFTs

e Split-radix FFT
— When N =p¥, where p is a small prime number and k is a

positive integer, this method can be more efficient than
standard radix-p FFTs

— “Split-radix Algorithms for Length-p™ DFT’s,” Vetterli and
Duhamel, Trans. on Acoustics, Speech, and Signal Processing,

Jan. 1989
A V
B W
C Wa X

III. Other FFTs

 Winograd Fourier Transform Algorithm (WFTA)

— Type of prime factor algorithm based on DFT building
blocks using a highly efficient convolution algorithm

— Requires many additions but only order N multiplications
— Has one of the most complex and irregular structures

e FFTW (www.tftw.org)

— C subroutine libraries highly tuned for specific architectures

o Goertzel DFT

— Not a “normal” FFT in that its computational complexity is
still order N2

— It allows a subset of the DFT’s N output terms to be
efficiently calculated

Signal Growth

* Note in DFT equation signal can grow by N times

e This is also seen in the FFT in its growth by r times in
a radix-r butterfly, and log, N stages in the entire
transform: r * (log,N) = N

* Thus, the FFT processor requires careful scaling

— Floating point number representation

* Easiest conceptually, but expensive hardware. Typically not
used in efficient DSP system:s.

— Fixed-point with scaling by 1/r every stage

e First stage is a special case. Scaling must be done on the inputs
before processing to avoid overflow with large magnitude
complex inputs with certain phases.

— Block floating point

Efficient Computation of the IFFT

e« out = IFFT(in)
* () Design a separate processor for IFFTs
* Re-use a forward FFT engine if available

— 1) Swapping real and imaginary parts:
a fft (imag(in) + i*real(in));
out (imag(a) + i*real(a));

— 2) Using conjugates:
a fft(conj(in)) ;
out conj (a) ;

— 3) A simple indexing change:

a = fft(in);
out = [a(0) a(N-1:-1:1)]; % with normal indices
out = [a(l) a(N :-1:2)]; % with weird matlab indices

