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FFT

• There are many ways to decompose an FFT
[Rabiner and Gold]

• The simplest ones are radix-2

• Computation made up of radix-2 butterflies

X = A + BW

Y = A – BW 

A

B
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FFT Dataflow Diagram

• Dataflow diagram
– N = 64

– radix-2

– 6 stages of 
computation
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Radix 2, 8-point FFT
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Radix 2, 8-point FFTRadix 2, 16-point FFT
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Radix 2, 8-point FFTRadix 2, 32-point FFT
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Radix 2, 8-point FFTRadix 2, 64-point FFT
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Radix 2, 256-point FFTRadix 2, 256-point FFT
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Radix 4, 16-point FFT
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Radix 4, 64-point FFT
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Radix 4, 256-point FFT
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Radix 2, Decimation-In-Time (DIT)

• Input order “decimated”—needs bit reversal

• Output in order

• Butterfly:

X = A + BW

Y = A – BW 
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Radix 2, Decimation In Frequency 
(DIF)

• Input in order

• Output “decimated”—needs 
bit reversal

• Butterfly:
– Two CPAs

– Wider multiplier

X = A + B

Y = (A – B) W 
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Radix 4, DIT Butterfly

• Decimation in Time (DIT) or Decimation in 
Frequency (DIF)
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Bit-Reversed Addressing

• Normally:
– DIT: bit-reverse inputs before processing

– DIF: bit-reverse outputs after processing

• Reverse addressing bits for read/write of data
– 000 (0)   000 (0)     # Word 0 does not move location

– 001 (1)   100 (4)     # Original word 1 goes to location 4

– 010 (2)   010 (2)     # Word 2 does not move location

– 011 (3)   110 (6)     # Original word 3 goes to location 6

– 100 (4)   001 (1) # Original word 4 goes to location 1

– 101 (5)   101 (5) # Word 5 does not move location

– 110 (6)   011 (3) # Original word 6 goes to location 3

– 111 (7)   111 (7) # Word 7 does not move location
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Addressing In Matlab
(Especially helpful for FFTs)

• Matlab
– Matlab can not index arrays with index zero!

• In matlab, do address calculations normally
– AddrA = 0, 2, 4, …

AddrB = 1, 3, 5, …

• then use pointers with an offset of one whenever 
indexing arrays
– AddrA = ……;

AddrB = ……;
A = data(AddrA+1);
B = data(AddrB+1);
…
data(AddrA+1) = X;
data(AddrB+1) = Y;
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Higher Radices

• Radix 2 and radix 4 are certainly the most popular

• Radix 4 is on the order of 20% more efficient than 
radix 2 for large transforms

• Radix 8 is sometimes used, but longer radix 
butterflies are not common because additional 
efficiencies are small and added complexity is non-
trivial (especially for hardware implementations)
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I. Common-Factor FFTs

• Key characteristics
– Most common class of FFTs

– Also called Cooley-Tukey FFTs

– Factors of N used in decomposition have common factor(s)

• A) Radix-r
– N = rk, where k is a positive integer

– Butterflies used in each stage are the same

– Radix-r butterflies are used

– N/r butterflies per stage

– k = logr N stages
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I. Common-Factor FFTs

• B) Mixed-radix
– Radices of component butterflies are not all equal

– More complex than radix-r

– Is necessary if N ≠ rk

– Example

• N = 32

• Could calculate with two radix-4 stages and one radix-2 stage
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II. Prime-Factor FFTs

• The length of transforms must be the product of 
relatively prime numbers

• This can be limiting, though it is often possible to 
find lengths near popular power-of-2 lengths 
(e.g., 7 x 11 x 13 = 1003)

• Their great advantage is that they have no WN
twiddle factor multiplications

• Irregular sorting of input and output data

• Irregular addressing for butterflies
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III. Other FFTs

• Split-radix FFT
– When N = pk, where p is a small prime number and k is a 

positive integer, this method can be more efficient than 
standard radix-p FFTs

– “Split-radix Algorithms for Length-pm DFT’s,” Vetterli and 
Duhamel, Trans. on Acoustics, Speech, and Signal Processing,
Jan. 1989
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III. Other FFTs

• Winograd Fourier Transform Algorithm (WFTA)
– Type of prime factor algorithm based on DFT building 

blocks using a highly efficient convolution algorithm

– Requires many additions but only order N multiplications

– Has one of the most complex and irregular structures

• FFTW (www.fftw.org)
– C subroutine libraries highly tuned for specific architectures

• Goertzel DFT
– Not a “normal” FFT in that its computational complexity is 

still order N2

– It allows a subset of the DFT’s N output terms to be 
efficiently calculated



B. Baas 463

Signal Growth

• Note in DFT equation signal can grow by N times

• This is also seen in the FFT in its growth by r times in 
a radix-r butterfly, and logrN stages in the entire 
transform: r ^ (logrN) = N

• Thus, the FFT processor requires careful scaling
– Floating point number representation

• Easiest conceptually, but expensive hardware. Typically not 
used in efficient DSP systems.

– Fixed-point with scaling by 1/r every stage

• First stage is a special case.  Scaling must be done on the inputs 
before processing to avoid overflow with large magnitude 
complex inputs with certain phases.

– Block floating point
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Efficient Computation of the IFFT

• out = IFFT(in)

• 0) Design a separate processor for IFFTs

• Re-use a forward FFT engine if available

– 1) Swapping real and imaginary parts:
a   = fft(imag(in) + i*real(in));

out = (imag(a) + i*real(a)); 

– 2) Using conjugates:
a   = fft(conj(in));

out = conj(a);

– 3) A simple indexing change:
a   = fft(in);

out = [a(0) a(N-1:-1:1)];  % with normal indices

out = [a(1) a(N  :-1:2)];  % with weird matlab indices


