
B. Baas 442

FFT

• There are many ways to decompose an FFT
[Rabiner and Gold]

• The simplest ones are radix-2

• Computation made up of radix-2 butterflies

X = A + BW

Y = A – BW

A

B

B. Baas 443

FFT Dataflow Diagram

• Dataflow diagram
– N = 64

– radix-2

– 6 stages of
computation

Memory

Locations

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

63

Input Output

B. Baas 444

Radix 2, 8-point FFT

B. Baas 445

Radix 2, 8-point FFTRadix 2, 16-point FFT

B. Baas 446

Radix 2, 8-point FFTRadix 2, 32-point FFT

B. Baas 447

Radix 2, 8-point FFTRadix 2, 64-point FFT

B. Baas 448

Radix 2, 256-point FFTRadix 2, 256-point FFT

B. Baas 449

Radix 4, 16-point FFT

B. Baas 450

Radix 4, 64-point FFT

B. Baas 451

Radix 4, 256-point FFT

B. Baas 452

Radix 2, Decimation-In-Time (DIT)

• Input order “decimated”—needs bit reversal

• Output in order

• Butterfly:

X = A + BW

Y = A – BW

A

B

x

car-sav add

+

A

B W

Critical path:

B. Baas 453

Radix 2, Decimation In Frequency
(DIF)

• Input in order

• Output “decimated”—needs
bit reversal

• Butterfly:
– Two CPAs

– Wider multiplier

X = A + B

Y = (A – B) W

A

B

x

+

+ (–)

B

Critical path:

A

W

B. Baas 454

Radix 4, DIT Butterfly

• Decimation in Time (DIT) or Decimation in
Frequency (DIF)

W

X

B

C

D

A

Y

V

Bit-Reversed Addressing

• Normally:
– DIT: bit-reverse inputs before processing

– DIF: bit-reverse outputs after processing

• Reverse addressing bits for read/write of data
– 000 (0)  000 (0) # Word 0 does not move location

– 001 (1)  100 (4) # Original word 1 goes to location 4

– 010 (2)  010 (2) # Word 2 does not move location

– 011 (3)  110 (6) # Original word 3 goes to location 6

– 100 (4)  001 (1) # Original word 4 goes to location 1

– 101 (5)  101 (5) # Word 5 does not move location

– 110 (6)  011 (3) # Original word 6 goes to location 3

– 111 (7)  111 (7) # Word 7 does not move location

B
IT

 R
E

V
E

R
S

A
L

B
IT

 R
E

V
E

R
S

A
L

B. Baas 455

B. Baas 456

Addressing In Matlab
(Especially helpful for FFTs)

• Matlab
– Matlab can not index arrays with index zero!

• In matlab, do address calculations normally
– AddrA = 0, 2, 4, …

AddrB = 1, 3, 5, …

• then use pointers with an offset of one whenever
indexing arrays
– AddrA = ……;

AddrB = ……;
A = data(AddrA+1);
B = data(AddrB+1);
…
data(AddrA+1) = X;
data(AddrB+1) = Y;

B. Baas 457

Higher Radices

• Radix 2 and radix 4 are certainly the most popular

• Radix 4 is on the order of 20% more efficient than
radix 2 for large transforms

• Radix 8 is sometimes used, but longer radix
butterflies are not common because additional
efficiencies are small and added complexity is non-
trivial (especially for hardware implementations)

B. Baas 458

I. Common-Factor FFTs

• Key characteristics
– Most common class of FFTs

– Also called Cooley-Tukey FFTs

– Factors of N used in decomposition have common factor(s)

• A) Radix-r
– N = rk, where k is a positive integer

– Butterflies used in each stage are the same

– Radix-r butterflies are used

– N/r butterflies per stage

– k = logr N stages

B. Baas 459

I. Common-Factor FFTs

• B) Mixed-radix
– Radices of component butterflies are not all equal

– More complex than radix-r

– Is necessary if N ≠ rk

– Example

• N = 32

• Could calculate with two radix-4 stages and one radix-2 stage

B. Baas 460

II. Prime-Factor FFTs

• The length of transforms must be the product of
relatively prime numbers

• This can be limiting, though it is often possible to
find lengths near popular power-of-2 lengths
(e.g., 7 x 11 x 13 = 1003)

• Their great advantage is that they have no WN
twiddle factor multiplications

• Irregular sorting of input and output data

• Irregular addressing for butterflies

B. Baas 461

III. Other FFTs

• Split-radix FFT
– When N = pk, where p is a small prime number and k is a

positive integer, this method can be more efficient than
standard radix-p FFTs

– “Split-radix Algorithms for Length-pm DFT’s,” Vetterli and
Duhamel, Trans. on Acoustics, Speech, and Signal Processing,
Jan. 1989

X

Y

A

B

V

W

C

D

Wa

Wb

B. Baas 462

III. Other FFTs

• Winograd Fourier Transform Algorithm (WFTA)
– Type of prime factor algorithm based on DFT building

blocks using a highly efficient convolution algorithm

– Requires many additions but only order N multiplications

– Has one of the most complex and irregular structures

• FFTW (www.fftw.org)
– C subroutine libraries highly tuned for specific architectures

• Goertzel DFT
– Not a “normal” FFT in that its computational complexity is

still order N2

– It allows a subset of the DFT’s N output terms to be
efficiently calculated

B. Baas 463

Signal Growth

• Note in DFT equation signal can grow by N times

• This is also seen in the FFT in its growth by r times in
a radix-r butterfly, and logrN stages in the entire
transform: r ^ (logrN) = N

• Thus, the FFT processor requires careful scaling
– Floating point number representation

• Easiest conceptually, but expensive hardware. Typically not
used in efficient DSP systems.

– Fixed-point with scaling by 1/r every stage

• First stage is a special case. Scaling must be done on the inputs
before processing to avoid overflow with large magnitude
complex inputs with certain phases.

– Block floating point

B. Baas 464

Efficient Computation of the IFFT

• out = IFFT(in)

• 0) Design a separate processor for IFFTs

• Re-use a forward FFT engine if available

– 1) Swapping real and imaginary parts:
a = fft(imag(in) + i*real(in));

out = (imag(a) + i*real(a));

– 2) Using conjugates:
a = fft(conj(in));

out = conj(a);

– 3) A simple indexing change:
a = fft(in);

out = [a(0) a(N-1:-1:1)]; % with normal indices

out = [a(1) a(N :-1:2)]; % with weird matlab indices

