DFT (DISCRETE FOURIER TRANSFORM)
&
FFT (FAST FOURIER TRANSFORM)

FFT References

e FFT derivation described in nearly all DSP textbooks
(at some level)

— Discrete-Time Signal Processing, Oppenheim and Schafer,
Prentice Hall

— Theory and Applications of Digital Signal Processing, Rabiner
and Gold

* Has good hardware discussions and a large number of FFT
algorithms with unusual dataflow graphs

FFT Applications
(A few examples)

Communications

— Ex: OFDM modulation.
e.g., Wi-Fi

Medical imaging
— Ex: X-ray computed tomography (CT)

— Ex: Magnetic resonance imaging
(MRI)

Signal analysis
Radar

FFT Applications
(A few examples)

* Scientific computing
* Protein folding simulations

— Ex: Car-Parrinello Method.
“The execution time of Car-
Parrinello based first principles
calculation is dominated by 3D FFTs
of electronic-state vectors...”
[T. Sasaki, K. Betsuyaku et al.,
“Recontigurable 3D-FFT Processor
for the Car-Parrinello Method,”
2005]

Foldit game:
http://told.it/portal/info/science

BioVisions animations
http://multimedia.mcb.harvard.edu/

B. Baas, © 2012, EEC 281 4

Discrete Fourier Transform
(DFT)

e X(k)is the DFT of the N-point sequence x(n)

N-1 _
X(k)=> x(me ™" k=0,1,..,N-1
n=0
Or we can write

N-1
X (k)= x(MW:,k=0,1,..,N -1
with "0

W _e—i27r/N
N =

W, = cos[zﬂj —1 sin(zﬂj
N N

W, Coefficient

Wy is a complex coefficient that is constant for a
particular length DFT/FFT
Wy changes
Wy, sometimes called the “N™ root of unity”

— because W N=1
Wy is periodic with N; that is, W,/*= W,/*"N for any
integer m

— Ex: W= W,l0= W,18= W 6= W14

Im
A

A
Unit circle
w /(W3\ 1
2 8
< < 8 > » Re

Discrete Fourier Transform
(DFT)

e Computational complexity

— Each of the N X(k) outputs requires N (complex)
multiplications and N-1 (complex) additions

— Straightforward DFT requires Order(N?) calculations

N—1
adds

|

N-1
X(k)=> x(MW,k=0,,..,N -1
n=0

I I

N N
outputs mults

Inverse Discrete Fourier
Transform (IDFT)

* x(n)is the IDFT of the N-point sequence X(k)

N-1 _
X(n) = ﬁZ X (k)e”™ N n=0,1,.,N -1
k=0

Or we can write

N-1
x(Nn) :ﬁZX(k)WN”k,n =0,1,....,N -1
k=0

Inverse Discrete Fourier
Transform (IDFT)

e Computational complexity

— Each of the N x(n) outputs requires N (complex)
multiplications and N-1 (complex) additions

e Same as the DFT
— Straightforward IDFT also requires Order(N?) calculations

N-1
x(Nn) = ﬁZ X (KW ™,n=0,1....N -1
k=0

— Multiplication by 1/N is a fixed shift when N = 2K

Fast Fourier Transform (FFT)

The FFT is an efficient algorithm for calculating the Discrete Fourier Transform

— It calculates the exact same result (with possible minor differences due to rounding of
intermediate results)

Widely credited to Cooley and Tukey (1965)

— “An Algorithm for the Machine Calculation of Complex Fourier Series,” in Mathematics of
Computation, volume 19, April 1965.

Previous to 1965, nearly all DFTs were calculated using Order(N?) algorithms

Cooley, Lewis, and Welch (1967) report some of the earlier known discoverers. They cite
a paper by Danielson and Lanczos (1942) describing a type of FFT algorithm and its
application to X-ray scattering experiments. The Danielson and Lanczos paper refers to
two papers written by Runge (1903; 1905). Those papers and lecture notes by Runge and
Konig (1924), describe two methods to reduce the number of operations required to
calculate a DFT: one exploits the symmetry and a second exploits the periodicity of the
DFT kernel €. Exploiting symmetry allows the DFT to be computed more efficiently
than a direct process, but only by a constant factor; the algorithm is still O(N?). By taking
advantage of the periodicity of the DFT kernel, much greater gains in efficiency are
possible, such that the complexity can be brought below O(N?). The length of transforms
Runge and Konig worked with were relatively short (since all computation was done by
hand); consequently, both methods brought comparable reductions in computational
complexity and Runge and Konig actually emphasized the method exploiting symmetry.

Fast Fourier Transform (FFT)

» Fifteen years after Cooley and Tukey’s paper, Heideman et al.
(1984), published a paper providing even more insight into the
history of the FFT including work going back to Gauss (1866).
Gauss’ work is believed to date from October or November of
1805 and, amazingly, predates Fourier’s seminal work by two
years.

 The FFT is order N log N
e Asan example of its efficiency, for a one million point DFT:
— Direct DFT: 1 x 102 operations

— FFT: 2 x 107 operations
— A speedup of 52,000!

e 1 second vs. 14.4 hours

FFT Derivation

e Consult a reference such as Oppenheim and Schafer
for details

* The most straightforward way to derive the FFT is to
separate the DFT summation index into odd and
even indexed summations, substitute for the
summation index, and recognize that there are then
DFTs for x,,,,, and x4

e Wy constants or coetficients are called twiddle factors

