DIGITAL FILTER
COEFFICIENT DESIGN
Filter Coefficient Design

• There are many algorithms to find the coefficients for a digital filter. A DSP course will tell you digital filters can be developed that share characteristics with common analog filters such as:
 – Butterworth
 – Chebyshev
 – Bilinear transformation
 – Elliptic

• Some specify no ripple in the pass band or the stop band since this is often a desirable characteristic
Parks-McClellan Method

- Parks-McClellan method is a popular method for designing digital filters
 - Published in the early 70s
 - Iterative
 - Computationally efficient
 - Works by specifying the
 1. length of the filter and
 2. frequency/magnitude pairs
 - See Oppenheim & Schafer for a thorough discussion
Filter Specification

• Filter specifications are frequently given in dB as min/max attenuation/ripple over frequency regions
• An example filter specification:
 – Low-pass filter
 – Maximum +/- 4dB ripple in passband
 – Sampling frequency is 100 MHz
 – Passband from DC to 12.5 MHz
 – Minimum attenuation 22dB from 19 MHz to 50 MHz
Attenuation and Ripple

- Key filter specifications
 - Min attenuation in stopband
 - Max attenuation in passband
 - Max ripple

\[\text{ripple} = \max - \min \]

- Maximum attenuation in the passband
- Minimum attenuation in the stopband
Example Filter

• The same example filter specification getting ready to be entered into matlab:
 – Low-pass
 – Notes:
 • 12.5 MHz = 0.25 \(\pi\)
 • 19 MHz = 0.38 \(\pi\)
 • 50 MHz = \(\pi\)
 • 100 MHz = 2\(\pi\) = \(f_s\)
 – frequencies specified as fractions of \(\pi\): \([0 \ 0.25 \ 0.38 \ 1]\);
 – corresponding amplitudes: \([1 \ 1 \ 0 \ 0]\);
 – Parks-McClellan ignores every other interval starting with the second one (0.25 \(\pi\) – 0.38 \(\pi\)). But this is ok—in this example, we don’t care about transition band between 0.25 \(\pi\) and 0.38 \(\pi\) anyway
 – Use the \texttt{remez()} function in matlab
Example Filter

- 7 coeffs.
Example Filter

- 11 coeffs.
Example Filter

- 21 coeffs.
Example Filter

- 51 coeffs.
Example 21-tap Filter

- Use the `remez()` function for filter design
  ```matlab
  >> help remez
  to get more information on the matlab function
  - Notice the `remez` function’s first argument is the number of desired taps \textit{minus 1}
  - `coeffs = remez(20, [0 0.25 0.30 1], [1 1 0 0]);`
  - To plot the coefficients, use `stem(-10:10, coeffs);`
Example Filter Coefficients

- This plot shows the coefficients of a 21-tap filter.
- This is a low-pass filter which is a rect() in the frequency domain.
- The low-pass filter has a sinc() shape in the time domain.
This matlab code produced the plots shown in this section.

In these examples, the filter response is clearer on a linear scale, so `freqz()`’s output was output into the variable “H” (magnitude) and plotted normally rather than using `freqz()`’s automatic plotting.
Seeing the Frequency Response of Filters
Filter Frequency Response (Method I)

• There are two main methods to see the frequency response of a vector of filter coefficients

• Method 1
  - \texttt{freqz()} function in matlab
    • Exact frequency response
    • Very fast
Filter Frequency Response
(Method II)

• To see frequency response of a filter (method II)
  1. Make a flat (white) spectrum input signal
  2. Send the signal into the filter and look at the output spectrum
     • Requires many samples for accurate output (not exact)
     • Much slower
     • Sometimes the only way to see spectrum
       – Ex: an arbitrary signal, not a filter response
       – Ex: hardware rounding
       – Ex: signal saturation
• Example matlab code:
  ```matlab
 in = rand(1, 100000) - 0.5;
 out = conv(coeffs, in) + 0.25; % Hypothetical ¼ LSB bias
 abs(fft(out))
 psd(out)
 spectrum(out)
  ```
• There are more relevant details in the *Estimating Spectral Magnitude* section