
DIGITAL FILTER
COEFFICIENT DESIGN

© B. Baas 259

Filter Coefficient Design

• There are many algorithms to find the coefficients for
a digital filter. A DSP course will tell you digital
filters can be developed that share characteristics
with common analog filters such as:
– Butterworth

– Chebyshev

– Bilinear transformation

– Elliptic

• Some specify no ripple in the pass band or the stop
band since this is often a desirable characteristic

© B. Baas 260

Parks-McClellan Method

• Parks-McClellan method is a popular method for
designing digital filters
– Published in the early 70s

– Iterative

– Computationally efficient

– Works by specifying the

1. length of the filter and

2. frequency/magnitude pairs

– See Oppenheim & Schafer for a thorough discussion

© B. Baas 261

Filter Specification

• Filter specifications are frequently given in dB as
min/max attenuation/ripple over frequency regions

• An example filter specification:
– Low-pass filter

– Maximum +/− 4dB ripple in passband

– Sampling frequency is 100 MHz

– Passband from DC to 12.5 MHz

– Minimum attenuation 22dB from 19 MHz to 50 MHz

© B. Baas 262

Attenuation and Ripple

• Key filter
specifications
– Min attenuation

in stopband

– Max attenuation
in passband

– Max ripple

ripple = max - min

minimum attenuation in the stopband

maximum attenuation in the passband

© B. Baas 263

Example Filter

• The same example filter specification getting ready to
be entered into matlab:
– Low-pass

– Notes:
• 12.5 MHz = 0.25 π

• 19 MHz = 0.38 π

• 50 MHz = π

• 100 MHz = 2π = fs
– frequencies specified as fractions of π: [0 0.25 0.38 1];

– corresponding amplitudes: [1 1 0 0];

– Parks-McClellan ignores every other interval starting with
the second one (0.25 π − 0.38 π). But this is ok—in this
example, we don’t care about transition band between 0.25 π
and 0.38 π anyway

– Use the remez() function in matlab

© B. Baas 264

Example Filter

• 7 coeffs.

© B. Baas 265

Example Filter

• 11 coeffs.

© B. Baas 266

Example Filter

• 21 coeffs.

© B. Baas 267

Example Filter

• 51 coeffs.

© B. Baas 268

Example 21-tap Filter

• Use the remez() function for filter design
>> help remez

to get more information on the matlab function

• Notice the remez function’s first argument is the
number of desired taps minus 1

• coeffs = remez(20, [0 0.25 0.30 1],

[1 1 0 0]);

• To plot the coefficients, use
stem(-10:10, coeffs);

© B. Baas 269

Example Filter Coefficients

• This plot shows
the coefficients
of 21-tap filter

• This is a low-
pass filter which
is a rect() in the
frequency
domain

• The low-pass
filter has a sinc()
shape in time
domain

© B. Baas 270

Matlab for Examples

• This matlab code
produced the plots shown
in this section

• In these examples, the
filter response is clearer
on a linear scale, so
freqz()’s output was
output into the variable
“H” (magnitude) and
plotted normally rather
than using freqz()’s
automatic plotting.

% exampfilt.m

%

% Develops and plots four low-pass filters of varying lengths with the

% same frequency/amplitude specs.

%

% 2020/02/20 Cleaned up plots, added axis labels and titles, added png plots

% 2005/02/10 Added PrintOn* variables

%----- Initialize

PrintOn = 1;

spec_f = [0 0.25 0.3 1];

spec_amp = [1 1 0 0];

axislimits = [0 pi 0 1.1];

%----- Main

figure(1); clf;

[H,W]=freqz(remez(6,spec_f,spec_amp));

H = H ./ abs(H(1));

plot(W,abs(H));

axis(axislimits); grid on; title('FIR filter with h(n) of 7 coefficients');

xlabel('Frequency');

ylabel('Filter response magnitude');

if PrintOn print -dpng exampfilt1.png; end

figure(2); clf;

[H,W]=freqz(remez(10,spec_f,spec_amp));

H = H ./ abs(H(1));

plot(W,abs(H));

axis(axislimits); grid on; title('FIR filter with h(n) of 11 coefficients');

xlabel('Frequency');

ylabel('Filter response magnitude');

if PrintOn print -dpng exampfilt2.png; end

figure(3); clf;

[H,W]=freqz(remez(20,spec_f,spec_amp));

H = H ./ abs(H(1));

plot(W,abs(H));

axis(axislimits); grid on; title('FIR filter with h(n) of 21 coefficients');

xlabel('Frequency');

ylabel('Filter response magnitude');

if PrintOn print -dpng exampfilt3.png; end

figure(4); clf;

co=remez(20,spec_f,spec_amp);

stem(-10:10, co);

axis([-10.5 10.5 -0.1 0.3]); grid on; title('21 h(n) coefficients');

ylabel('Coefficient magnitude');

if PrintOn print -dpng exampfilt4.png; end

figure(5); clf;

[H,W]=freqz(remez(50,spec_f,spec_amp));

H = H ./ abs(H(1));

plot(W,abs(H));

axis(axislimits); grid on; title('FIR filter with h(n) of 51 coefficients');

xlabel('Frequency');

ylabel('Filter response magnitude');

if PrintOn print -dpng exampfilt5.png; end

Seeing the Frequency Response
of Filters

© B. Baas 272

Filter Frequency Response
(Method I)

• There are two main methods to see the frequency
response of a vector of filter coefficients

• Method 1
– freqz() function in matlab

• Exact frequency response

• Very fast

© B. Baas 273

Filter Frequency Response
(Method II)

• To see frequency response of a filter (method II)
1. Make a flat (white) spectrum input signal

2. Send the signal into the filter and look at the output spectrum
• Requires many samples for accurate output (not exact)

• Much slower

• Sometimes the only way to see spectrum
– Ex: an arbitrary signal, not a filter response

– Ex: hardware rounding

– Ex: signal saturation

• Example matlab code:
in = rand(1, 100000) - 0.5;

out = conv(coeffs, in) + 0.25; % Hypothetical ¼ LSB bias

abs(fft(out))

psd(out)

spectrum(out)

• There are more relevant details in the Estimating
Spectral Magnitude section

