dB

dB

- "dB" are a relative measure and can make sense only in relation to another level.
- Saying "the level of this signal is 5 dB" is similar to saying "the cost of this candy bar is 5 cents more."
- When judging the response of your filter(s), measure them in relation to a good reference level (e.g., near DC or pi); the absolute level does not matter.
 - Be careful if your input signal does not have a flat spectrum at the reference point

dB

- Consider two signals: *x* and *y* and suppose *x* is 10x larger in magnitude than *y*
- *Power* = *voltage*² / *resistance*, so P_x is 100x larger than P_y
- "Magnitude" dB
 - $-20 * \log_{10}(x/y)$
 - $20 * \log_{10} (10y/y) = 20 * \log_{10} (10) = x$ is 20dB larger than y
- "Power" dB
 - $10 * \log_{10} (P_x / P_y)$
 - 10 * $\log_{10} (100 P_y / P_y) = 10 * \log_{10} (100) = x$ is 20dB larger than y