
CONTROL CIRCUITS
AND

COUNTERS

© B. Baas 220

Control in Digital Systems

• Three primary components of digital systems
– Datapath (does the work)

– Control (manager, controller)

– Memory (storage)

© B. Baas 221

Control in Digital Systems

• Control blocks in chips
– Typically small amount of HW

– Typically substantial verilog code

– Therefore:

• We typically do not care about small circuit area

• We typically do not care about fast circuits

– A possible exception is in cases of “data-dependent
control”. For example, if arithmetic is required to make
control decisions e.g., "change states if sum < phase"

– Verilog code can be complex

• Many opportunities for bugs

• May be impossible to test all states and transitions

• Often the focus of testing by Verification Engineers

logic

© B. Baas 222

Sequential Logic

• Combinational circuits’ outputs are a function of the
circuit’s inputs and a time delay

• Sequential circuits’ outputs are a function of the
circuit’s inputs, previous circuit state, and a time
delay

input
output

statestate_c

© B. Baas 223

Control with
Finite State Machines

• Of course we can design all standard finite state
machines we learned in basic logic design classes
– Moore type FSM

• outputs depend only on the present state (state below)

– Mealy type FSM

• outputs depend on the present state and the inputs

logic
input

output

statestate_c

© B. Baas 224

Writing Verilog for
State Machines

• Design process
– Think

– Determine all necessary registers (state, count, etc.)

– Think

– Draw state diagrams if helpful

– Draw block diagrams if helpful

– Draw timing diagrams

– Pick descriptive signal names

– Think

– Then…

• Write verilog

• Test it

© B. Baas 225

#1 Design Goal for Controllers: Clarity

• Clear code → bugs will be less likely

• It is even more important to use good signal naming
conventions in control logic than with other digital
circuits
– Ex: state_c → state

• Reduce the amount of state if possible (clarity)
– Ex: It may be better to have one global state machine instead

of two separate ones

• Increase the amount of state if helpful (clarity)
– Ex: It may be better to have two separate global state

machines instead of a single global one

– Ex: Instantiate separate counters to count independent events

I. Counters

• Typically the output is equal to the state of the
counter

• In normal operation, the next state is the present state
plus or minus a fixed number
– Or reset to an initial state

– Or hold the value to reduce power when idle

• Fixed simple circular counter
– Example: 0 → 1 → 2 → 3

– This would be a good choice if you want something to
happen once every four cycles, as an example

© B. Baas 226

I.a. Counters—Count Up

• Count Up Counter
– Example: 0 → 1 → 2 → ... → 23

if (count == 8’d023) begin

 ...do something...

• The reset hardware is simple, probably using
reset-able FFs

• If the counter’s ending count is programmable,
detection of the finishing condition requires a more
general comparator

© B. Baas 227

reset

Is it better to count
up 0→23 or
down 23→0?

Or no difference?

I.a. Counters—Count Up

• Example: 0 → 1 → 2 → ... → 23

• When count gets to 23, hold that value to reduce power dissipation

• Fixed constants: increment = 1, stop at 23 base 10

© B. Baas 228

count_c count

in
cr

em
en

t

clockreset

+

// Example Code version #1

reg [7:0] count; // real FF register

reg [7:0] count_c; // combinational logic

always @(count or reset) begin

 // default section is good practice

 // Try hold for default

 count_c = count; // hold

 if (count != 8’d023) begin

 count_c = count + 8’h01; // increment

 end

 if (reset == 1’b1) begin // high priority

 count_c = 8’b0000_0000;

 end

end

always @(posedge clock) begin

 count <= #1 count_c;

end

I.a. Counters—Count Up
Example Code Version #2

• What happens if count is 24 – 255?
– What do you want to happen?

• Notice that inputs to the “next state logic” will be the registered
count, not count_c

© B. Baas 229

// Example Code version #2

reg [7:0] count; // real FF register

reg [7:0] count_c; // combinational logic

always @(count or reset) begin

 // default increments in this example

 count_c = count + 8’h01; // increment

 if (count == 8’d023) begin

 count_c = count; // hold

 end

 if (reset == 1’b1) begin // high priority

 count_c = 8’b0000_0000;

 end

end

I.b. Counters—Count Down

• Count Down Counter
– Example: 17 → 16 → 15 → ... → 0

if (count == 8’d000) begin

 ...do something...

• The reset hardware is more complex especially if
multiple starting values are needed

• Detection of the finishing condition is requires very
simple hardware, conceptually a single NOR gate

© B. Baas 230

preset/reset

I.b. Counters—Count Down

• Example: 17 → 16 → 15 → ... → 0

• When count gets to 0, hold that value to reduce power dissipation,
and assert done
output signal

• Fixed constants:
increment = –1,
stop at 0

© B. Baas 231

reg [7:0] count; // real FF register

reg [7:0] count_c; // combinational logic

reg done; // output ==1 when done

always @(count or reset) begin

 // default section is good practice

 // Let default be decrement

 count_c = count – 8’h01; // decrement

 done = 1’b0;

 if (count == 8’h00) begin

 count_c = count; // could also be = 8’h00

 done = 1’b1;

 end

 if (reset == 1’b1) begin // highest priority

 count_c = 8’d017;

 end

end

always @(posedge clock) begin

 count <= #1 count_c;

end

I.c. One-Hot Ring Counter

• One-hot encoding

• One flip-flop for each state

• Requires circuits to initialize in a one-hot configuration

• Minimal hardware, no adders required!

• Zero-time state decode (i.e., each state is fully decoded by a FF output)

© B. Baas 232

clock

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

	Slide 219: CONTROL CIRCUITS AND COUNTERS
	Slide 220: Control in Digital Systems
	Slide 221: Control in Digital Systems
	Slide 222: Sequential Logic
	Slide 223: Control with Finite State Machines
	Slide 224: Writing Verilog for State Machines
	Slide 225: #1 Design Goal for Controllers: Clarity
	Slide 226: I. Counters
	Slide 227: I.a. Counters—Count Up
	Slide 228: I.a. Counters—Count Up
	Slide 229: I.a. Counters—Count Up Example Code Version #2
	Slide 230: I.b. Counters—Count Down
	Slide 231: I.b. Counters—Count Down
	Slide 232: I.c. One-Hot Ring Counter

