COMPLEX ADDITION, MULTIPLICATION, ROTATION, AND RECT ↔ POLAR CONVERSION

Complex Numbers

- Complex numbers are commonly used in DSP applications
- real + j imag (common in EE) real + i imag (common in math) i = j = sqrt(-1)
- rectangular notation: *Re* + j *Im*
- polar notation: *Mag, Angle* $\underline{/\theta}$
- Re = I = "In-Phase"
 Im = Q = "Quadrature"
 Yes, it is unfortunate that Im ≠ I
- Complex numbers and negative frequencies are "in the math"

Polar Notation

receiver

- Sometimes the phase of a signal is what is important
- Example: QPSK modulation (encodes 2 bits/symbol)

transmitter

I = transmitted complex signal \times = received noisy signal

"channel"

• As a rule, convert to a system which eliminates unuseful information as soon as possible

(+1,+1)

Complex Addition

- Best done in rectangular notation
 - There isn't a way to add numbers in polar notation in a hardware-efficient manner
- (A + jB) + (C + jD)= (A + C) + j(B + D)
- 2 adds

Complex Multiplication, Polar

- Easiest in polar notation
- $(A_{mag'} \ \theta_A) \times (B_{mag'} \ \theta_B)$ = $A_{mag} \times B_{mag'} (\theta_A + \theta_B)$
- 1 multiply, 1 add

Complex Multiplication, Rectangular

- 1. Straightforward approach
 - $(A + jB) \times (C + jD)$ = AC + j² BD + j AD + j BC (j² = -1) = (AC - BD) + j(AD + BC)
 - 4 multiplies, 2 "adds"
 - Critical path
 - product_real = 2 mults > ~(BD) > 4:2 > CPA
 - product_imag = 2 mults > 4:2 > CPA

Complex Multiplication, Rectangular

2. A second approach

$$- real = (A - B) D + A (C - D) imag = (A - B) D + B (C + D)$$

- Check the equations to verify they are correct

$$real = (A - B) D + A (C - D)$$

= $AD - BD + AC - AD$
= $AC - BD$ \odot the same answer as method #1
 $imag = (A - B) D + B (C + D)$
= $AD - BD + BC + BD$
= $AD + BC$ \odot the same answer as method #1

– 3 multiplies, 5 "adds"

Complex Multiplication, Rectangular

- 2. A second approach (continued)
 - + Advantage: one fewer multiplier!
 - Drawbacks
 - There are two CPA adder/subtractors in the critical path
 - With *N*-bit inputs, all three multipliers are almost certainly going to need one input that is one bit wider than *N*; i.e., *N*-bit × (*N*+1)-bit multipliers

Complex Multiplication, Rotations

- 3. Multiplication by a (fixed) complex number *C*
 - $A = B \times C$ where *C* is magnitude 1 and fixed θ
 - $A = B \times 1.0 \underline{/\theta}$

- $C = \cos \theta + j \sin \theta$
- This changes only the *phase* of *B*
- Functions of θ may be precomputed and stored

- a) Straightforward method
 - $A_{real} = B_{real} \cos \theta B_{imag} \sin \theta$ $A_{imag} = B_{imag} \cos \theta + B_{real} \sin \theta$
 - 4 multiplies, 2 adds
 - Critical path (see notes)

b) Golub's method

- $A_{real} = (B_{real} + B_{imag}) (\cos \theta \sin \theta) + B_{real} \sin \theta B_{imag} \cos \theta$ $A_{imag} = B_{imag} \cos \theta + B_{real} \sin \theta$
- 3 multiplies
 - All should have carry-save outputs
- 5 adders for variable θ
- 4 adders for fixed θ
- Better yet, build the 3-input adder/subtractor with a single carry-save adder followed by a carry-propagate adder for the three terms of A_{real}
 - 3 carry-propagate adders in total
- Critical path (see notes)

c) Buneman's method

$$\begin{array}{l} - & A_{real} = \left[(1 + \cos \theta) \left(B_{real} - B_{imag} \tan \theta / 2 \right) \right] - B_{real} \\ A_{imag} = \left[(1 + \cos \theta) \left(B_{real} - B_{imag} \tan \theta / 2 \right) \right] \\ & \times \tan \theta / 2 + B_{imag} \end{array}$$

- 3 multiplies, 3 adds
- Best for angles where $\tan \theta/2$ is not too large

- c) Buneman's method critical path analysis
 Function on the critical path
 Function not on the critical
 - path if θ is fixed
 - Function not on the critical path
 - A more accurate hardware total for an efficient implementation with fixed θ:
 - 1 mult, single word output
 - 2 mults, carry-save output
 - 3 carry-propagate adds
 - 2 rows of 3:2 adders

Polar to Rectangular Conversion

- real = magnitude × $cos(\theta)$ imag = magnitude × $sin(\theta)$
- Hardware
 - 1 cos and 1 sin (could be expensive)
 - 2 multiplies

Rectangular to Polar Conversion

- magnitude = $sqrt(real^2 + imag^2)$ angle = $tan^{-1}(imag/real)$
- *magnitude* hardware
 - 2 squares (~equivalent to 1 multiply if optimized)
 - 1 addition
 - 1 square root (could be expensive)

Rectangular to Polar Conversion

- magnitude = $sqrt(real^2 + imag^2)$ angle = $tan^{-1}(imag/real)$
- *angle* Hardware
 - $1 \tan^{-1}$ (could be expensive)
 - 1 division possibly (probably not)
 - If implemented with lookup table(s) and the *imag/real* quotient is not needed elsewhere, the cascaded divide and tan⁻¹ functions should/could be implemented as a single merged function: tan⁻¹(*y*/*x*) addressed by *real* and *imag*
 - address = {real, imag}

Rectangular to Polar Conversion

- The *magnitude* calculation can be simplified in a similar manner
 - If the square root will be implemented with a lookup table...then it is worth considering if the address into the table should be {*real, imag*} rather than sqrt(*real*² + *imag*²)
 - Need to think about word widths required

Rectangular vs. Polar Key Point Summary

- Addition/Subtraction easiest in rectangular
- Multiplication easiest in polar
- Non-trivial to convert between the two
- Rules of thumb
 - Keep in rectangular
 - If doing many complex multiplications or if only phase or magnitude is important, then consider moving to polar