EFFICIENT MULTI-INPUT
ADDITION
(CARRY-SAVE)

91 = LN

Building Efficient Multiple-input
Adders

Figure out: algorithm, format conversion if needed,
word alignment, sign extension, rounding, etc.

Draw “dot diagram” of inputs (one dot per bit)
Cover with carry-save adder blocks as appropriate
Repeat step #3 until there are two output terms

Calculate final result with CPA (carry-propagate
adder)

Things to check (as a reminder)
— Output width sufficient

— Inputs sign extended if necessary

— Only calculate necessary output bits

3:2 Adder Row

e Compresses 3 words (4-bit g, b, c in this example) to
two words

® ® o ° a

® ® o ° b

® ® o ° C
C S

® ® ° ®

3:2 Adder Row

* No “sideways” carry signals to a neighboring 3:2 adder
even though it would be correct logically (it would cause a
slow ripple)

e Having said that, it is ok if limited to a small number of ripples in
special cases

o o 0 °
o o 0 °
o o o«-;t/c .
o o ° ®

4:2 Adder Row

* Compresses 4 words (4-bit g, b, ¢, d in this
example) to two words

O O O ® a
O O O o b
CO — —
O O O ® C
O ® O ® d
O O O o o

4:2 Adder Row

* Remember ci and co signals on the ends of the
row of 4:2 adders

@) @) O o
coO @) @) O o | Ci
@) @) O o
@) @) O o
v
@)) o o

Carry-save Adder
Building Blocks

* Notice that to eliminate or “compress” one dot
requires approximately 1 “Full adder of hardware”
— A 4:2 adder can be made with two full adders

4.2 (really 5:3) 3:2 or Full adder
®
® ®
® ®
® ®
o o ® ®
4 dots > 2 dots « 3dots > 2 dots
(actually 5 dots = 3 dots) * Compresses 1 dot
« Compresses 2 dots * “l FA” hardware

o “2 FA” hardware

Carry-save Adder
Building Blocks: Half Adder

Half adder
A B C S o |A
0 0 0 0 e |B
0 1 0 1
1 0 0 1 °
1 1 1 0 c 5
C = AND(ny, 1) « 2 dots > 2 dots
Doesn’t reduce the number » No compression!

of dots but can still be very » Approximately “0.5 FA”
useful for moving dots hardware

Carry-save Adder
Example, Solution 1

e Example using 4:2
adders

— Inputs: 8 words with
hypothetical group of
bits in the three LSBs
(could be caused by
rounding)

— Output: 12-bit, single-
word
* Requires 12-bit CPA
for the final adder

stage 1

stage 2

o|[e>e[e © © o]je © © ol © o o
[@ © ojje © o o]0 @ @ o

ol offe e e ojje o o ojje o o @
ofle offe © e ofje o o ojje o o @
ofle offe © e ofje o o ojje o o @
ofle offe © e ofje o o ojje o o @
ofle offe © e ofje o o ojje o o @
olleqol[e © @ ofje o o ojje o o @

o||®© O|® @©
o||®© O|® @©

Q)
ol|le oj|® @

ol|®

stage 4 stage 3

Carry-save Adder
Example, Solution 2

e Uses half adders
e The final CPA is now a 10-bit

adder instead of 12-bit

e Even if a smaller 10-bit CPA
adder is not used, a 12-bit
adder with this dot diagram
will be faster than with the
Solution 1 dot diagram due to
“0” inputs into LSB bits which
results in a shorter longest
(critical) path

¢ Faster circuits are usually also

stage 1

smaller and lower power

¢ Typically Synthesis tools will
simplify circuits with constant
(0 or 1) inputs

o

stage 2

ofle offe © e ofje o o ojje o o @

olle offe e
olle offe e

ol @
ol @

stage 4 stage 3

ol offe e e ojje o o ojje o o @
ofle offe © e ofje o o ojje o o @
ofle offe © e ofje o o ojje o o @
ofle offe © e ofje o o ojje o o @
ollecol[e © @ ofje o o ojje o o @
ol|le>ol[e e © ojje o o oje o o @
ofle offe © e ofje o o ojje o o @

Sign Extension for
Multiple-Input Addition

Example: add four 8-bit numbers with three sign extension bits each (11-bit

result). In reality, the sum of four 8-bit numbers needs to be only 10 bits, but
we choose 11 here to illustrate a point.

— In this example, we focus only on optimizing the first stage which consists of only
carry-save addition

sign
extension bits

W7 W7 W7 1 Wg Wg W5 Wy W3 Wy Wi Wy
X7 X7 Xq 1 X9 Xg X5 Xy X3 Xy X5 X

Sign Extension for
Multiple-Input Addition

* Method #0: Straightforward solution with a row of
4:2 carry-save adders

— ¢0 > cin "sideways" connections are made between all 4:2s

sign
extension bits

© B. Baas 98

Sign Extension for
Multiple-Input Addition

* To be more efficient than the straightforward solution, notice that
the input bits in the 4 MSB columns are the same

— It would be inefficient to calculate the same output multiple times

- Althoufcih the 4 inputs are the same, the ci bit is not the same......for
one of the 4:2s!

— Recall that the "side" carry-out is a function of only the four 4:2
inputs shown in the diagram below as w, x, y, z. It is by design not a
function of the ci bit.

|-——||-——||-——|E|-——|

v g Hyr o g |
TN s T
| I I H I
X7|_|X7|_,X7u_|x7

INEITEHE A
Y7 Y717 5 Y
|Z7HZ7HZ7IHZ7I

(R IS [I -y M

Sign Extension for
Multiple-Input Addition

* Method #1a: Use one 4:2 and replicate its output; but ci can not be used —so
all four columns will be the same

— There is a huge drawback —the output is in three terms, not two, so this
method requires a second stage of carry-save adders

— Isis hard to imagine when the ci input could be useful in this example. We
tie it to zero here.

© B. Baas 100

Sign Extension for
Multiple-Input Addition

* Method #1b: Use two 4:2s and replicate output of left 4:2
— All four MSB 4:2s have the same side co (# f(ci))

— Must keep right 4:2 since its sum and c1 (B below) depend on a
different ci than the other three 4:2s” ci inputs

Sign Extension for
Multiple-Input Addition

e Simplification method #2

— Look at one sign-extended word

— There are two cases for the sign-extension bits: 0 or 1

e We want

— 0000 whenthe MSB=0
1111 whenthe MSB=1

e Note
— 0000=1111
+ 1
- 1111 =1111

+ 0

Sign Extension for
Multiple-Input Addition

Two cases:
w7=O: O O 0 O We Wg W, Wy Wy, Wy W
w7=1: 1 1 1 1 We Wg W, Wy Wy, Wy W

Substitute; 1 1 1 1

W7 W6 W5 W4 W3 W2 Wl WO

 Looks like we made 1t worse: 1 row = 2 rows;
but it gets better...

Sign Extension for
Multiple-Input Addition

e Simplify all input words similarly

T
T
TR

‘f‘qx‘\lg‘l—‘l—‘l—‘l—‘

N
~J

Sign Extension for
Multiple-Input Addition

* Rule: Never use hardware to add constants together
* The four constants can be pre-added in this case

1 1 1

1 1 1

1 1 1

1 1 1

1 0 O > 1 1 0 O
W
X
'z

Sign Extension for
Multiple-Input Addition

1 1 0.0

§W7 W6 W5 W4 W3 W2 Wl
P Xy Xg Xg Xy X3 Xy Xy

Y7 Yo Y5 Ya Y3 Yo V1

E Z7 Z6 25 Z4 Z3 22 Zl

Sign Extension for
Multiple-Input Addition

Finally,

21 1 - 129 2 25 Z4 23 Zp 27 Zg

\ Not even a

dot appears
here

* Rule: Never use hardware to add a zero to anything

Sign Extension for
Multiple-Input Addition

The dot diagram with no dot in column 8 (LSB = [0], MSB = [10]),

[10] [9] [8] " [7] [6] [1] [0]

© B. Baas 108

