
EFFICIENT MULTI-INPUT
ADDITION

(CARRY-SAVE)

© B. Baas 88

Building Efficient Multiple-input
Adders

1. Figure out: algorithm, format conversion if needed,
word alignment, sign extension, rounding, etc.

2. Draw “dot diagram” of inputs (one dot per bit)

3. Cover with carry-save adder blocks as appropriate

4. Repeat step #3 until there are two output terms

5. Calculate final result with CPA (carry-propagate
adder)

6. Things to check (as a reminder)
– Output width sufficient

– Inputs sign extended if necessary

– Only calculate necessary output bits

© B. Baas 89

3:2 Adder Row

• Compresses 3 words (4-bit a, b, c in this example) to
two words

c s

a

b
c

© B. Baas 90

3:2 Adder Row

• No “sideways” carry signals to a neighboring 3:2 adder
even though it would be correct logically (it would cause a
slow ripple)
• Having said that, it is ok if limited to a small number of ripples in

special cases

x c s

© B. Baas 91

4:2 Adder Row

co

• Compresses 4 words (4-bit a, b, c, d in this
example) to two words

a

b
c

d

© B. Baas 92

4:2 Adder Row

co

• Remember ci and co signals on the ends of the
row of 4:2 adders

ci

© B. Baas 93

Carry-save Adder
Building Blocks

4:2 (really 5:3) 3:2 or Full adder

• Notice that to eliminate or “compress” one dot
requires approximately 1 “Full adder of hardware”
– A 4:2 adder can be made with two full adders

• 3 dots  2 dots

• Compresses 1 dot

• “1 FA” hardware

• 4 dots  2 dots

(actually 5 dots  3 dots)

• Compresses 2 dots

• “2 FA” hardware

© B. Baas 94

Carry-save Adder
Building Blocks: Half Adder

• Half adder

• A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

• S = XOR(in0, in1)
C = AND(in0, in1)

• Doesn’t reduce the number
of dots but can still be very
useful for moving dots

SC

A

B

• 2 dots  2 dots

• No compression!

• Approximately “0.5 FA”

hardware

Carry-save Adder
Example, Solution 1

• Example using 4:2
adders
– Inputs: 8 words with

hypothetical group of
bits in the three LSBs
(could be caused by
rounding)

– Output: 12-bit, single-
word

• Requires 12-bit CPA
for the final adder

CPA

s
ta

g
e
 1

s
ta

g
e
 4

s
ta

g
e
 3

s
ta

g
e
 2

© B. Baas 95

CPA

• Uses half adders

• The final CPA is now a 10-bit
adder instead of 12-bit

• Even if a smaller 10-bit CPA
adder is not used, a 12-bit
adder with this dot diagram
will be faster than with the
Solution 1 dot diagram due to
“0” inputs into LSB bits which
results in a shorter longest
(critical) path

• Faster circuits are usually also
smaller and lower power

• Typically Synthesis tools will
simplify circuits with constant
(0 or 1) inputs

Carry-save Adder
Example, Solution 2

© B. Baas 96

s
ta

g
e
 1

s
ta

g
e
 4

s
ta

g
e
 3

s
ta

g
e
 2

© B. Baas 97

Sign Extension for
Multiple-Input Addition

• Example: add four 8-bit numbers with three sign extension bits each (11-bit
result). In reality, the sum of four 8-bit numbers needs to be only 10 bits, but
we choose 11 here to illustrate a point.

– In this example, we focus only on optimizing the first stage which consists of only
carry-save addition

w7 w7 w7 w7 w6 w5 w4 w3 w2 w1 w0

x7 x7 x7 x7 x6 x5 x4 x3 x2 x1 x0
y7 y7 y7 y7 y6 y5 y4 y3 y2 y1 y0
z7 z7 z7 z7 z6 z5 z4 z3 z2 z1 z0

sign

extension bits

CPA

• Method #0: Straightforward solution with a row of
4:2 carry-save adders
– c0  cin "sideways" connections are made between all 4:2s

© B. Baas 98

Sign Extension for
Multiple-Input Addition

w7 w7 w7 w7 w6 w5 w4 w3 w2 w1 w0

x7 x7 x7 x7 x6 x5 x4 x3 x2 x1 x0
y7 y7 y7 y7 y6 y5 y4 y3 y2 y1 y0
z7 z7 z7 z7 z6 z5 z4 z3 z2 z1 z0

sign

extension bits

© B. Baas 99

Sign Extension for
Multiple-Input Addition

• To be more efficient than the straightforward solution, notice that
the input bits in the 4 MSB columns are the same
– It would be inefficient to calculate the same output multiple times
– Although the 4 inputs are the same, the ci bit is not the same......for

one of the 4:2s!
– Recall that the "side" carry-out is a function of only the four 4:2

inputs shown in the diagram below as w, x, y, z. It is by design not a
function of the ci bit.

w7 w7 w7 w7 w6 w5 w4 w3 w2 w1 w0

x7 x7 x7 x7 x6 x5 x4 x3 x2 x1 x0
y7 y7 y7 y7 y6 y5 y4 y3 y2 y1 y0
z7 z7 z7 z7 z6 z5 z4 z3 z2 z1 z0

© B. Baas 100

Sign Extension for
Multiple-Input Addition

• Method #1a: Use one 4:2 and replicate its output; but ci can not be used—so
all four columns will be the same

– There is a huge drawback—the output is in three terms, not two, so this
method requires a second stage of carry-save adders

– Is is hard to imagine when the ci input could be useful in this example. We
tie it to zero here.

w7 w7 w7 w7 w6 w5 w4 w3 w2 w1 w0

x7 x7 x7 x7 x6 x5 x4 x3 x2 x1 x0
y7 y7 y7 y7 y6 y5 y4 y3 y2 y1 y0
z7 z7 z7 z7 z6 z5 z4 z3 z2 z1 z0

000 0

© B. Baas 101

Sign Extension for
Multiple-Input Addition

• Method #1b: Use two 4:2s and replicate output of left 4:2
– All four MSB 4:2s have the same side co ( f(ci))

– Must keep right 4:2 since its sum and c1 (below) depend on a
different ci than the other three 4:2s’ ci inputs

w7 w7 w7 w7 w6 w5 w4 w3 w2 w1 w0

x7 x7 x7 x7 x6 x5 x4 x3 x2 x1 x0
y7 y7 y7 y7 y6 y5 y4 y3 y2 y1 y0
z7 z7 z7 z7 z6 z5 z4 z3 z2 z1 z0

© B. Baas 102

Sign Extension for
Multiple-Input Addition

• Simplification method #2
– Look at one sign-extended word

– There are two cases for the sign-extension bits: 0 or 1

• We want
– 0 0 0 0 when the MSB = 0

1 1 1 1 when the MSB = 1

• Note
– 0 0 0 0 = 1 1 1 1

+ 1

– 1 1 1 1 = 1 1 1 1
+ 0

© B. Baas 103

Sign Extension for
Multiple-Input Addition

w7=0: 0 0 0 0 w6 w5 w4 w3 w2 w1 w0
w7=1: 1 1 1 1 w6 w5 w4 w3 w2 w1 w0

1 1 1 1

w7 w6 w5 w4 w3 w2 w1 w0

Two cases:

Substitute:

• Looks like we made it worse: 1 row  2 rows;

but it gets better...

© B. Baas 104

Sign Extension for
Multiple-Input Addition

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1+

• Simplify all input words similarly

w7 …

x7 …

y7 …

z7 …

© B. Baas 105

Sign Extension for
Multiple-Input Addition

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 0 0
+

• Rule: Never use hardware to add constants together

• The four constants can be pre-added in this case

1 1 0 0

w7
x7
y7
z7

© B. Baas 106

Sign Extension for
Multiple-Input Addition

1 1 0 0

w7 w6 w5 w4 w3 w2 w1 w0

x7 x6 x5 x4 x3 x2 x1 x0
y7 y6 y5 y4 y3 y2 y1 y0
z7 z6 z5 z4 z3 z2 z1 z0

© B. Baas 107

Sign Extension for
Multiple-Input Addition

Finally,

w7 w6 w5 w4 w3 w2 w1 w0

x7 x6 x5 x4 x3 x2 x1 x0
y7 y6 y5 y4 y3 y2 y1 y0
z7 z6 z5 z4 z3 z2 z1 z0

• Rule: Never use hardware to add a zero to anything

1 1 -

Not even a
dot appears

here

© B. Baas 108

Sign Extension for
Multiple-Input Addition

The dot diagram with no dot in column 8 (LSB = [0], MSB = [10]),

[0][1][10] [9] [8] [7] [6]

1 1 -

