FASTER CARRY-PROPAGATE ADDERS
The entire goal to make faster adders is to resolve the carry across the entire adder structure more quickly.

It should be perplexing at first glance how this could be possible given the dependence of every output bit on the LSB input bits.

A few common faster CPAs:

1) Carry Select
 - Speculatively add and select later
2) Carry Lookahead
 - Look at how a carry propagates through a group of bits
3) Conditional-sum (recursive carry select)
4) Carry skip
5) Other parallel prefix adders
 - Kogge-Stone, 1973
 - Brent-Kung, 1982
 - etc.
1) Carry Select Adder

- Break ripple adder into pieces
- Compute each sub-block (except the one covering the least-significant bits) twice: once assuming the carry input is a “0” and once assuming the input is a “1”
- Each sub-block computes 1) sum bits and 2) a single carry bit
- A mux selects correct sum+carry bits when the previous block’s carry-out (the carry-in of the block containing the mux) is known
- This method can be sped up further with a hierarchical structure (conditional-sum)
2) Carry Lookahead Adder

- Break ripple adder into pieces
- Look at the bits inside of each piece and decide two things based only on the input operands and independent of the sub-block’s carry-in
 - Will this sub-block generate a carry-out regardless of the carry-in (generate)
 - Will the carry-out be equal to the value of the carry-in (propagate)
 - Other variations include a condition to stop a carry (kill)
- In the simplest form, the carry-out can be calculated by,
 \[c_{out} = \text{Generate OR (Propagate AND } c_{in}) \]
- Key point: Each sub-block pre-examines the input operand bits and gets ready for fast carry-out calculation
- There are a number of more complicated variations
- This method can be sped up further with a hierarchical structure
2) Carry Lookahead Adder

• When is Generate = 1?
 – When $c_{in} = 0$ and $c_{out} = 1$
 – When $a + b = \{c_{out}, \text{sum}\} = \{1\text{xxx}...\text{xxx}\}$ with $c_{in} = 0$
 – For example, $a[3:0] + b[3:0] = 1\text{xxx}$ with $c_{in} = 0$
 – It will be true that Generate = 1 when $c_{in} = 1$ and $c_{out} = 1$, but that is not sufficient to show the cases when Generate = 1

• When is Propagate = 1?
 – When $a + b = \{c_{out} , \text{sum}\} = \{0111...111\}$
 – For example, $a[3:0] + b[3:0] = 01111$