7 SDRAM_CONTROL_4PORT Module

7.1 Description

IS42R16320D SDRAM is used to store image data. Data source (RAW2RGB module) and data
consumer (VGA CONTROLLER module) communicate to SDRAM by SDRAM_CONTROL_4PORT
module. This module contains a SDRAM controller. The 16-bit SDRAM data port is regarded as 4
virtual data ports (2 read, 2 write). The 30-bit input RBD data is buffered in two 16-bit-width
write FIFOs which write data to SDRAM. In the meanwhile, to meet the read request of the data
consumer (VGA CONTROLLER module), the RGB data stored in SDRAM previously is read out and
buffered in two 16-bit-width read FIFOs. This module forms a complete frame buffer.

The structure of SDRAM_CONTROL_4PORT modaule is demonstrated below.

SDRAM_CONTROL_4PORT

CLK
125MHz
RESET_N

DRAM_CLK
WR1_DATA] [15:0] (FROM PLL)
—_—
WR2_DATA| [15:0) mMDATAIN

RAW2RGB | wr_cik mRD_REQ » >

WR_ENABLH SADDR ADDR
- —
CTRL

[15:0]

rd_fifo_wusediy pam SDRAM
[15:0] mWR_REQ

mDATAOUT DQ[15:0]
<—

RD_ENABLH RD_MASK
0

A 4

A 4

Figure 7-1 SDRAM CONTROL 4PORT Module Structure

7.1.1 Data Flow

RGB format image data from RAW2RGB module is written to two write FIFOs in
SDRAM_CONTROL module continuously. VGA CONTROLLER reads data from two read FIFOs
continuously. The FIFOs READ/WRITE CONTROL LOGIC generates read/write request and address
to the CONTROL INTERFACE sub module according to the state of four FIFOs. The CONTROL
INTERFACE sub module handles not only the read/write request from FIFOs READ/WRITE
CONTROL LOGIC, but also initial request or refresh request generated by its internal timer
according to SDRAM timing sequence. The CONTROL INTERFACE sub module sends decoded
command signals to the COMMAND sub module and command acknowledge signal to FIFOs
READ/WRITE CONTROL LOGIC. The COMMAND module uses decoded command signals to
generate operations conforming to SDRAM protocol and control the signals output to SDRAM.
Controlled by OE signal generated by COMMAND sub module, the DATA PATH sub module
controls the direction of data line to make it simultaneous to the corresponding operations to
SDRAM.

38

Ziyuan Dong
WR_ENABLE

Ziyuan Dong
WR_ENABLE

Ziyuan Dong
RD_ENABLE

7.1.2 Using Four FIFOs

The input data is from RAW2RGB module and the output data is transferred to VGA CONTROLLER
module. This means the read/write operations between external modules and
SDRAM_CONTROLL_4PORT module need high continuity but comparatively low speed. On the
other hand, the read/write between SDRAM_CONTROLL_4PORT module and SDRAM do not
need continuity, and the speed is high. For the reasons above, asynchronous dual clock FIFOs are
needed as input/output buffer. The data width of FIFOs is 16 bit, and the depth should be larger
than one read/write burst length.

IS42R16320D SDRAM is used to store data. It has 4 banks, the data width of which is 16 bit. Since
30-bit data is needed for one pixel (R,G,B each need 10-bit data), the data of one pixel can’t be
write to/read from SDRAM in one operation. Also the 30-bit data can’t share the same
column/row address if it is stored in one bank of SDRAM, because the data width is only 16.

For convenience, we use two banks of SDRAM to store data of each pixel, as is demonstrated in
the figure below. In this way, we build 4 virtual data ports for the 16-bit SDRAM data port (2 read,
2 write). We split the data of one pixel into two parts and store them in two banks separately,
which means they can have the same column/row address. When the pixel data needs to be read
out, these two parts are combined together to form a complete RGB-data.

Besides, to enhance the read/write speed, Full-Page Burst Mode is used in read/write
transactions. For detail about Full-Page Burst Mode, please refer to Chapter 7.3.2

SDRAM Controller»

VAN VAN
Write \l |>Read1 Write2 -l l:Read2

R[9:0] G[9:5] G[4:0]| B[2:0]

Bank1 Bank2

Figure 7-2 Four Port FIFOs Structure

39

7.2 Interface

Port Direction | Width Description

CLK Input 1 Module clock

RESETN Input 1 x:?iizli)\r/\(isae:ynchronous

WR1_DATA Input "DSIZE Write FIFO 1 Input data

WR_ENABLE Input 1 Write request to Write FIFO 1
WR1_ADDR Input “ASIZE Write start address of Write FIFO 1
WR1_MAX_ADDR Input “ASIZE Write max address of Write FIFO 1
WR1_LENGTH Input 9 Write length of Write FIFO 1
WR1_LOAD Input 1 Write register load input of Write FIFO 1
WR1_CLK Input 1 Write clock of Write FIFO 1

WR2_DATA Input "DSIZE Write FIFO 1 Input data

WR2 ot T WriteTegquestto-Write FiFO2
WR2_ADDR Input *ASIZE Write start address of Write FIFO 2
WR2_MAX_ADDR Input "ASIZE Write max address of Write FIFO 2
WR2_LENGTH Input 9 Write length of Write FIFO 2
WR2_LOAD Input 1 Write register load input of Write FIFO 2
WR2_CLK Input 1 Write clock of Write FIFO 2

RD1_DATA Output "DSIZE Read FIFO 1 output data

RD_ENABLE Input 1 Read request to Read FIFO 1
RD1_ADDR Input “ASIZE Read start address of Read FIFO 1
RD1_MAX_ADDR Input “ASIZE Read max address of Read FIFO 1
RD1_LENGTH Input 9 Read length of Write FIFO 1
RD1_LOAD Input 1 Read register load input of Read FIFO 1

40

Ziyuan Dong
WR_ENABLE

Ziyuan Dong
RD_ENABLE

RD1_CLK Input 1 Read clock of Write FIFO 1
RD2_DATA Output "DSIZE Read FIFO 2 output data
[=TnYs] L 'y 1 n | oy n lroirn 2
NV IIINUL S ncauv |C\1UCJL UTiCdaumTintTv o
RD2_ADDR Input “ASIZE Read start address of Read FIFO 2
RD2_MAX_ADDR Input “ASIZE Read max address of Read FIFO 2
RD2_LENGTH Input 9 Read length of Write FIFO 2
RD2_LOAD Input 1 Read register load input of Read FIFO 2
RD2_CLK Input 1 Read clock of Write FIFO 2
SA Output 12 SDRAM address
BA Output 2 SDRAM bank address

SDRAM chip selects
CS N Output 2 . P

Active low
CKE Output 1 SDRAM clock enable
RAS_N Output 1 SDRAM Row Address Strobe
CAS_N Output 1 SDRAM Column Address Strobe
WE_N Output 1 SDRAM write enable
DQ Output ‘DSIZE SDRAM data bus
DQM Output 'DSIZE/8-1 | SDRAM data mask

* User can decide "ASIZE and "DSIZE. ASIZE should no more than 23(the space of one SDRAM

bank is 8M) and "DSIZE should no more than 16.

In this system, "ASIZE is 23 and "DSIZE is 16.

Table 7-1 SDRAM CONTROL 4PORT module Interface

41

7.3 Sub modules and Logic
7.3.1 FIFO

1. Description
Altera provides dual-clock FIFO (DCFIFO) mega functions. User can use the FIFO parameter editor
launched from the MegaWizard Plug-In Manager in the Quartus Il software to build the FIFO

mega functions.

The FIFO functions are mostly applied in data buffering applications that comply with the
first-in-first-out data flow in asynchronous clock domains. The read and write signals are
synchronized to the rdclk and wrclk clocks respectively. The input and output ports of the DCFIFO

is illustrated below.

DCFIFO
| data(7..0]

wrfull »
wrreq wrempty |
>wrclk wrusedw{8..0] =

P rdreq q7.0]
» > rdclk rdfull |—p»
rdempty
rdusedw{8..0] =

P acir

Figure 7-3 DCFIFO Structure

2. Interface

Port Direction | Width Description
Positive-edge-triggered clock.
Use to synchronize the following ports:
B data
wrclk Input 1 B wrreq
W wrfull
B wrusedw
Positive-edge-triggered clock.
Use to synchronize the following ports:
W q
rdclk Input 1 B rdreq
B rdempty
B rdusedw
Holds the data to be written in the FIFO when the
. wrreq signal is asserted. If you manually instantiate
data Input lpm_width the FIFO, ensure the port width is equal to the
I[pm_width parameter.

42

wrreq

Input

Assert this signal to request for a write operation.

rdreq

Input

Assert this signal to request for a read operation

aclr

Input

Assert this signal to clear all the output status
ports. Asynchronous.

Output

Ipm_width

Shows the data read from the read request
operation.

the width of the q port must be equal to the width
of the data port.

wrfull

Output

When asserted, the FIFO is considered full. Do not
perform write request operation when the FIFO is
full.

rdempty

Output

When asserted, the FIFO is considered empty. Do
not perform read request operation when the FIFO
is empty

wrusedw

Output

Ipm_widthu

Show the number of words stored in the FIFO.
Ensure that the port width is equal to the
Ipm_widthu parameter if you manually instantiate
the FIFO

rdusedw

Output

Ipm_widthu

Show the number of words stored in the FIFO.
Ensure that the port width is equal to the
Ipm_widthu parameter if you manually instantiate
the FIFO

* Some other ports of the DCFIFO IP Core (wrempty, rdfull, almost_empty, almost_full, etc.) are not

used.

3. Main Parameter

Table 7-2 DCFIFO Interface

Parameter Type Description

[pm_width Integer Specifies the width of the data and q ports

[pm_widthu Integer Specifies the width of the rdusedw and
wrusedw ports

[pm_numwords Integer Specifies the depths of the FIFO you require.

The value must be at least 4.

The value assigned must comply with this
LPM_WIDTHU

equation, 2

Table 7-3 DCFIFO Parameter

Attention: Default values of other parameter are commended to use. For more parameter, please

refer to http://www.altera.com/literature/ug/ug fifo.pdf, page 10.

43

http://www.altera.com/literature/ug/ug_fifo.pdf

4. Timing example

The figure below shows an example of the timing of DCFIFO. The write clock and read clock are of
different frequency. This example is simulated by myself using Modelsim, which can help you get
a better understand of DCFIFO. For more timing examples and explanation about DCFIFO, please
refer to http://www.altera.com/literature/ug/ug fifo.pdf

[reJrerrerereyrrrererre e e e e
[S SN (N R [S U | (N T A [S SN
{0001 o002 | J0003 | o004 | Jo005 | Jooo6 | Joooz o008 | J0005 | 000a

Figure 7-4 DCFIFO Timing Example

44

http://www.altera.com/literature/ug/ug_fifo.pdf

7.3.2 FIFOs Read/Write Control Logic

This module provides an interface for FIFOs and SDRAM to exchange data. Its main functions

include:

1. Converting the state of FIFOs into read/write request signals for COMMAND_INTERFACE sub
module. The read/write request to SDRAM is generated automatically.
2. Generate read/write address to SDRAM.
3. Switch among the four FIFOs deciding which one should be read or write.

4. Control the read/write operations of FIFO according to SDRAM timing sequence.

Signals related to the FIFOs read/write control logic are demonstrated below. Table 7-4 shows

functions of some signals in the figure below.

125 MHz

CLK

RESET_N
R

RAW2RGB

-

WR1_DATA| !

=\

WR2_DATA

WR_CLK

WR_ENABLE

VGA
CONTROLLER

=

<RD1_DATA
D2_DATA| |

o

RD_CLK

RD_ENABL

CMD
CMD_ACK
<«

ADDR

16_BITS PATA
igomspata

Figure 7-5 Signals Related to FIFO Read/Write Control Logic

1. FIFO interfaces
The input/output signals of the 4 FIFOs in SDRAM_CONTROL_4PORT module is demonstrated

below.

Write FIFO 1 Write FIFO 2 Read FIFO 1 Read FIFO 2
Wrelk WR_CLK WR_CLK RD_CLK RD_CLK

(from RAW2RGB) (from RAW2RGB) (from RAW2RGB) (from RAW2RGB)
Rdclk CLK CLK CLK CLK

(module clock) (module clock) (module clock) (module clock)
Data WR1_DATA WR2_DATA mDATAOUT mDATAOUT
(input data) (from RAW2RGB) (from RAW2RGB)
Wrreq WRITE WRITE RD_MASK[0]& RD_MASK[1]&

(from RAW2RGB) | (from RAW2RGB) | mWR_REQ mWR_REQ

(Generated by FIFO
CONTROL LOGIC)

(Generated by FIFO
CONTROL LOGIC)

45

Ziyuan Dong
WR_ENABLE

Ziyuan Dong
RD_ENABLE

Ziyuan Dong

Rdreq WR_MASK[0]& WR_MASK[1]& READ READ
mRD_REQ mRD_REQ (from (from
(Generated by FIFO | (Generated by FIFO | VGA CONTROLLER) | VGA CONTROLLER)
CONTROL LOGIC) CONTROL LOGIC)

Q mDATAIN1* mMDATAIN2* RD1_DATA RD2_DATA

(output data) (to VGA CONTROLLER) | (to VGA CONTROLLER)

* mDATAIN is the input data of SDRAM memory.
If WR_MASK[O0] is 1, mDATAIN = mDATAIN1; else if WR_MASK[1] is 1, mDATAIN = mDATAIN2

Table 7-4 Input and Output Signals of 4 FIFOs

2. Read/Write Request Generation

The RAW2RGB module, which can be considered as data source, keeps writing data to the two
write FIFOs. The VGA CONTROLLER module as the “data consumer”, keeps reading data to two
read FIFOs. The states of the two write FIFOs are reflected by the wr_fifo_rusedwl and
wr_fifo_rusedw?2 signals, which represents how much data in write FIFO1/2 can be read out to
the SDRAM. The states of the two read FIFOs are reflected by the rd_fifo_wusedwl and
rd_fifo_wusedw?2 signals, which represents how much data in read FIFO1/2 can be written to the
VGA CONTROLLER.

When the amount of data in write FIFO1 reaches rWR1_LENGTH, which is a parameter
configured by user, a read request mRD_REQ will be automatically generated to read data from
Write FIFO 1 to the SDRAM, and WR_MASK][0] will be set to 1. The amount of data read for one
burst is rWR1_LENGTH (16-bit data is transferred for one clock cycle in a burst). And also when
data is read out from write FIFO 1, RAW2RGB module still keeps writing data to it.

Write FIFO 1 has the highest priority to exchange data with SDRAM. If the amount of data in write
FIFO 1 is not enough for one burst and SDRAM data line is not occupied at the same time, write
FIFO 2 will be considered. If the amount of data in write FIFO2 reaches rWR2_LENGTH, read
request mRD_REQ will be generated to read data from Write FIFO 2 to the SDRAM, and
WR_MASK[1] will be set to 1.

If both write FIFO 1 and 2 do not have enough data to be read out and SDRAM is not busy, read
FIFO 1 will be considered. When the amount of data in read FIFO1 is less than rRD1_LENGTH, a
write request mWR_REQ will be automatically generated to write data from SDRAM to the write
FIFO1, and RD_MASK[0] will be set to 1. And also when data is written from SDRAM to read FIFO
1, VGA CONTROLLER module still keeps reading data to it.

Read FIFO 2 has the lowest priority to communicate with SDRAM. The circumstance is similar to

what are mentioned above.

The code about this part is shown below.

46

533 y Write Side 1
534 if((write_side_fifo_rusedwl >= rWR1l_LENGTH) && (xWR1l_LENGTH!'=0))
E] begin
536 mADDR <= rWR1l_ADDR;
537 mLENGTH <= rWR1l_LENGTH;
WR_MASK <= ;

RD MASK <=
540 miR <=
541 mRD <=
542 S end
543 / Write Side 2
544 else if((write_side_fifo_ rusedwZ >= rWRZ_LENGTH) && (rWRZ_LENGTH!=0))
sas o begin
546 mADDR <= rWRZ_ADDR;
547 mLENGTH <= rWR2_LENGTH;
548 WR_MASK <= ;
543 RD MASK <=
550 miR <=
551 mRD <=
552 + end
553 // Read Side 1
554 else if((read_side_fifo_wusedwl < rRD1_LENGTH))
s [H begin
556 mADDR <= rRD1_RDDR;
557 mLENGTH <= rRD1_LENGTH;

8 WR_MASK <= ;
RD_MASK <=
5e0 miR <=
561 mRD <=
562 — end
/4 Read Side 2
564 else if((read_side_£fifo_wusedwZ < rRDZ_LENGTH))
= begin
566 mADDR <= <rRDZ_ADDR;
567 mLENGTH <= rRDZ_LENGTH;

8 WR_MASK <= ;
565 RD MASK <=
570 miR <=

Figure 7-6 Code Related to Read/Write Request Generation

3. Address Generation
The FIFOs read/write logic also generates the read/write address mADDR to the SDRAM.

The value of mADDR is assigned when a read/write request to the SDRAM is generated. If SDRAM
reads data from write FIFO 1, réWR1_ADDR, which is the register write address of write FIFO 1,
will be assigned to mADDR. Likewise, if SDRAM reads data from write FIFO 2, rWR2_ADDR will be
assigned to mADDR. If SDRAM writes data to read FIFO 1 or 2, rRD1_ADDR or rRD2_ADDR will be
assigned to mADDR.

The value of rWR1_ADDR is generated in the following way: when user input signal WR1_LOAD is
set to 1 (i.e. the FIFO is reset), user input address WR1_ADDR will be assigned to rWR1_ADDR.
Else when write FIFO 1 writes data to SDRAM, after a write transaction is finished, rWwR1_ADDR
will adds rWR1_LENGTH to its original value. If the current address is less than
rWR1_MAX_ADDR - rWR1_LENGTH, the address will be reassigned to WR1_ADDR. Here
rWR1_MAX_ADDR is the max address offset to WR1_ADDR.

The condition of WR2_ADDR, RD1_ADDR, RD2_ADDR is similar. The code about this part is

shown below.

47

H] if (WR1_LOAD)
- begin
rWR1l_ADDR <= WRI1_ADDR;
rWR1_LENGTH <= WR1_LENGTH;
~ end
168 else if (mWR_DONE&WR MASK[O])
483 B begin
470 if (rWR1_ADDR<rWR1l_MAX ADDR-rWR1l_LENGTH)
471 rWR1_ADDR <= rWR1_ADDR+rWR1l_LENGTH;
472 else
473 rWR1_ADDR <= WR1_ADDR;

r end

Figure 7-7 Code Related to Address Generation

Notice that mADDR is multiplex. When the FIFOs are reset, user-defined address (WR1_ADDR,
WR2_ADDR, RD1_ADDR and RD2_ADDR) can be assigned to mADDR. During the normal
read/write transaction, mADDR includes the column address, row address and bank address to
SDRAM.

Attention:

In this design, Write FIFO 1 and read FIFO 1 use the same part of SDRAM since they have the
same start address(WR1_ADDR = RD1_ADDR = 0) and maximum offset (rWR1_MAX_ADDR =
rRD1_MAX_ADDR = 640*480). The maximum offset is 640*480, which is the resolution of one
input image (please refer to RAW2RGB module for detail). So only the data amount of one image
can be stored in SDRAM.

We know the actual storage space of one bank of the SDRAM is 8M, which is larger than 640*480.
Why no more images are stored in the SDRAM? The reason is that the read frequency and write
frequency of SDRAM are different, which is because the data source (RAW2RGB module) and
data consumer (VGA CONTROLLER module) are in different clock domain. Thus the change of
rWR1_ADDR and rRD1_ADDR are not simultaneous. If the read frequency of SDRAM is quicker
than the write frequency, rRD1_ADDR will grow quicker than WR1_ADDR. Supposing infinite
space is used in SDRAM to store data, which means the difference between rRD1_ADDR and
rWR1_ADDR are getting larger. So the image data written to SDRAM and the image data read
from SDRAM will not be simultaneous, and the time delay between input image and output
image will be larger and larger.

So we set the maximum offset is 640*480 to store only one image in SDRAM. Since rRD1_ADDR
and rWR1_ADDR are both circular, the difference between them will be no more than 640*480,
which means the delay between input image and output image will be no more than the time of
capturing one frame for camera. In this way, the output image can be regarded as “real-time”.
However, if we store the data amount of ten images in SDRAM, the maximum time delay
between input and output will be the time of capturing ten frames for camera, which is longer.

4. Full-Page Burst Mode and timing sequence
When large amount or data is read or written, Full-Page Burst Mode is a good way to take full use
of SDRAM performance and enhance read/write speed.

The full-page burst is used in conjunction with the BURST TERMINATE command to generate

48

arbitrary burst lengths, which can be defined by user according to the actual application. The
data in a row can be read or written consecutively in full-page mode. The address doesn’t need
to be configured to every data.

Read timing sequence

Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in that
bank must be opened. This is accomplished via the ACTIVE command, which selects both the
bank and the row to be activated. After opening a row (issuing an ACTIVE command), a READ or
WRITE command may be issued to that row after several clock cycles determined by trcb.

The starting column and bank addresses are provided with the READ command. During READ
bursts, the valid data-out element from the starting column address will be available following
the CAS latency after the READ command. Each subsequent data-out element will be valid by the
next positive clock edge.

Upon completion of a burst, assuming no other commands have been initiated, the DQs will go
High-Z. A full-page burst will continue until terminated.

Full-page READ bursts can be truncated with the BURST TERMINATE command or PRECHARGE
command to the same bank, and The BURST TERMINATE command or PRECHARGE command
should be issued x cycles before the clock edge at which the last desired data element is valid,
where x equals the CAS latency minus one. The diagram below shows Full-Page burst read
terminated by BURST TERMINATE command for CAS latency=2. For more detail, please refer to
1IS42R16320D.pdf, Page 37

READ - FULL-PAGE BURST

I%I&-

]
1
i
' i
COMMAND)E o *X \: oF)O(rean YO e wor XX v

xus| ow

oo, R ‘—_\k“'“h A\

i
Ao-As, A11, A12 * ROW).M-ﬂ)(
a5 ¢ tA H N 1 1 ! 1

185 1 A 1
1

BAD, BA1)wa;(

1 1
1 1
1

L

13K

! T -
- e i S DCOh T CARE
Ful page Fulpage bust not sefitarminaing

compietion Use BUAST TERMINATE comman: [UNDEFINED

Figure 7-8 Read Full-Page Burst

49

(null)://(null)Related%20Data/IS42R16320D.pdf

The code about this part is shown below. ST is the controller status which records the timing of

SDRAM. When the FIFOs

control logic send a write/read command CMD

to

COMMAND_INTERFACE module and get acknowledge signal CMDACK, the read/write transaction

to SDRAM begins.

case (ST)
begin
if ({Pre_RD, mRD}==:)
begin
Read <=
Wirite <=
cMD <=
ST <=
end
else if ({Pre_WR miR}=)
begin
Read <=
Wirite <=
CcMD <=
ST <=
end
end
begin
if (CMDACK=1)
begin
CMDL=C
ST<=Z;
end
end
default:
begin
if (ST!=SC_CL+SC_RCD+mLENGTH+1)
ST<=ST+1;
else
ST<=0;
end
endcase

Figure 7-9 Code Related to Read Timing

In a read transaction, after (trRcp + tsc_cL.) clock cycles the READ command is executed, input

data from SDRAM is valid (tsc_cL = CAS latency) according to timing sequence in last page. After

another mLENGTH clock cycles, which is the user-defined read length, the input data is invalid.

The related code is shown below.

Figure 7-10

if (Read)
begin
if (ST=SC_CL+SC_RCD+1)
OUT_VALID <=
else if (ST==SC_CL+SC_RCD+mLENGTH+1)

begin
OUT_VALID <=
Read <=
mRD DONE <=
end
end
else
mRD DONE <=

Code Related to Read Timing Sequence

50

Write timing sequence

An ACTIVE command must be issued before the WRITE command, which is similar to the read
timing sequence. The WRITE command may be issued after several clock cycles determined by
tRCD.

The starting column and bank addresses are provided with the WRITE command. During WRITE
bursts, the first valid data-in element will be registered coincident with the WRITE command.
Subsequent data elements will be registered on each successive positive clock edge. Upon
completion of a fixed-length burst, assuming no other commands have been initiated, the DQs
will remain High-Z and any additional input data will be ignored. A full-page burst will continue

until terminated.

Full-page WRITE bursts can be truncated with the BURST TERMINATE command or PRECHARGE
command to the same bank. When truncating a WRITE burst with the BURST RERMINATE, the
input data applied coincident with the BURST TERMINATE command will be ignored. The last data
written (provided that DQM is LOW at that time) will be the input data applied one clock previous
to the BURST TERMINATE command. The diagram below shows Full-Page burst write terminated
by BURST TERMINATE command. For more detail, please refer to 1S42R16320D.pdf, Page 44

WRITE - FULL PAGE BURST

To T 2 15 Tn+t T2
o [reee [L
‘-.*:.Lf‘:; : i i i | | :
CKE £ L/?_/i_/?_/?_/:\ll,/?_/iu
Sl A it At Bt vl
COMMAND ' kx ')@(—
| “?‘E | ”f!fli?o“? e e e
p L 1 -— | 1] ! I I
e U YA YA YA
gl | | | | | | |
AD-A9, A11, A12 j(ROW J(0L 7R i
Ias) tan |) | \ T |
ROW &
a1 fa i) i i T |
1 1 " 1 1 M 1 1
BAD,BA1 X BANK XBANKX
: : ge o lositow fos| tow oS ' for s | ton los | tov
DQ *Dl\m D m+1 Div ms2 Dnm+3 &Dl\m- k* *
1 -
= trco Full page completed ! []ooNT CARE

Figure 7-11 Write Full-Page Burst

The code about this part is shown below. In a write transaction, after trcp clock cycles after the
WRITE command is executed, output data to SDRAM is valid according to timing sequence in last
page. After another mLENGTH clock cycles, which is the user-defined read length, the output
data is invalid. The related code is shown below.

51

(null)://(null)Related%20Data/IS42R16320D.pdf

if(Wrice)

426 él begin

427 if(ST==SC_CL-1)

428 IN REQ <=

429 else if(ST==SC_CL+mLENGTH-1)

430 IN REQ <=

431 else if(ST==SC_CL+SC_RCD+mLENGTH)

435 — end

43¢ - end
else

432 [H begin
3 Write <=

miR_DONE<L=

438 miR_DONE<L=

Figure 7-12 Code Related to Write Timing

7.3.3 COMMAND_INTERFACE Sub Module

1. Description

This module judges the input CMD signal from FIFOs CONTROL LOGIC and output the
corresponding decoded command to COMMAND module. There are also an initial timer and a
SDRAM refresh timer embedded in the module. When the SDRAM is powered up and initialized,
a predefined manner must be complied. In this case, the decoded command to COMMAND

module is generated according to the value of initial timer. Also Because the SDRAM needs to be

refreshed automatically when it works, a REFRESH decoded command is generated at regular

interval according to the refresh timer.

2. Interface

Port Direction | Width | Description

CLK Input 1 Module clock

RESET_N Input 1 xze:lij\:\isaestynchronous

CMD Input 3 Command input

ADDR Input ASIZE | Address

REF_ACK Input 1 Refresh request acknowledge

CM_ACK Input 1 Command acknowledge(from COMMAND module)
NOP Output 1 Decoded NOP command

READA Output 1 Decoded READA command

WRITEA Output 1 Decoded WRITEA command

52

REFRESH Output 1 Decoded REFRESH command

PRECHARGE Output 1 Decoded PRECHARGE command

LOAD_MODE Output 1 Decoded LOAD_MODE command

SADDR Output "ASIZE | Registered version of ADDR

REF_REQ Output 1 Refresh request

INIT_REQ Output 1 Initial request

CMD_REQ Output 1 Command acknowledge (to FIFOs CONTROL LOGIC)

Table 7-5 CONTROL INTERFACE sub module Interface

3. Function

Generate WRITEA and READA command

This module generates WRITEA and READA command to the COMMAND module according to
the input CMD signal from FIFOs CONTROL LOGIC.

If CMD is 3'b001, READA command is generated.

If CMD is 3'b010, WRITEA command is generated.

If CMD is 3'b000, NOP command is generated.

Generate refresh command

Since the storage unit of SDRAM is actually capacitor which tends to discharge, SDRAM must be
auto refreshed at regular interval to maintain the data stored. According to the datasheet of
SDRAM 1S42R16320D, The SDRAM must be refreshed 8k times in 64ms. Because the clock
frequency of the module is 125MHz, therefore 64ms means 8M clock cycles. Thus the interval
between two auto refresh behaviors is 8M/8k = 1k clock cycles.

The code in this module about auto refresh is shown below. The parameter REF_PER is defined in
the file SDRAM_PARAM..h. Its value is 1024 for the reason mentioned above. A timer is used to
calculate the passing clock cycles since last refresh. If the value of timer is 0, a refresh request is
generated. And when a refresh acknowledge is received, the value of timer will be reset to
REF_PER.

53

6 S

1 —end

// refresh timer

always € (posedge CLK or negedge RESET_N)

if (RESET_N == 0)

begin

else

begin

end

timer
REF_REQ

if (REF_ACK = 1)
begin
timer <= REF_PER;
REF_REQ <=0;
end
else if (INIT_REQ
begin

= 1)

begin

timer <= REF_PER+200;

REF_REQ <=0;
end
else
timer <= timer - 1
if (timer==0)

REF REQ <= 1;

Figure 7-13 Code Related to Refresh Request Generation

Generate Initial manner

When the SDRAM is powered up and initialized, a predefined manner must be complied. The
values of REFRESH command, PRECHARGE command and LOAD _MODE command are decided
according to the initialized timing sequence, which is illustrated below. For more details, please

referto 1S42R16320D.pdf, Page 22-24
. T0 T . Indd « To+1 « Tp+1 Tp+2 Tp+3
ok FEe—f ¢ FT ¢ kel L L f L L[1
loslos | !) ! ! ! !
CEF RGN\ S VR VA VA WV WV
:tCManMH toms temH toms, tomr ! ! ! !
commanp X om YN raRRAX B XX HoP XX B ROP XXX X Rom YOXECTVEX
1 1 1 1 1 1 1 1
DQM/ 1 L L L e 1 £ 1 o : 1 L
A O S N
: 1 1 1 1 tas tan 1]
A0-A9, A1, A12 . 22 22 22 22)(CODE ;(X row X
|} ALLBANKS 5 : 5 o, X : v
A10 1 CODE ROW
Pt Z<INGLE BANK ™ i ! ' tas! tan [!
L (& L} (¢ (¢ L
BAO, BA1 1 QXALBAKS)Y Q 13 CODE X BANK X
Ly . ' : i : :
1 1 1 1 1 1 1
DQ : L] (/S L] 55 L] T T l T
: —T: :4— trp : trc : trc : tmMrRD :
' { i
Power-up: Ve~ Precharge LUTO REFRESH AUTO REFRESH Program MODE REGISTER® %%

and CLK stable all banks

1
1
T = 200ps Min. :

At least 8 Auto-Refresh Commands

[CJoonT caARE

Figure 7-14 Initialization Timing Sequence

54

(null)://(null)Related%20Data/IS42R16320D.pdf

T0 T1 T2 " T+t , To+1
- tcLa|atcH»

CLK | CK—*—>I< cL 4« e 23 | 1 | 22' | 1 L
tcks tokH ! ! ! |
[| | . ! fc !

CKEF TR\ S ! ¢\ ' S

toums tomH ! ! ! \
- |] | e ! !

commano e HoP XX XX P XX BN OXEEIVEXX
| I I I I
DQMW/ ' ‘ 5 ' < '

DOML, DQMH < g

| I | I I
I 1 | I I

AO-A9, A11, A12 ' ' ' Q I 2'2 X ROW X
ALL BANKS ! l B | B |

mo XX g D LD
SINGLEBANK 1 ! : |

BAO, BAT Y BANKs & Q_ XEBANKX
tas 1 taH | i v ! " !
| | \ | |
DQ —High-Z : : $ I £ -
I |
I tap ; trc | trc !

[C]ooNT cARE

Figure 7-15 Auto Refresh Cycles in Initializaiton

A 100us delay is required prior to issuing any command other than a COMMAND INHIBIT or a
NOP. The COMMAND INHIBIT or NOP may be applied during the 100us period and should
continue at least through the end of the period. With at least one COMMAND INHIBIT or NOP
command having been applied, a PRECHARGE command should be applied once the 100us delay
has been satisfied. All banks must be precharged. This will leave all banks in an idle state after
which at least eight AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles
are complete, the SDRAM is then ready for mode register programming. The mode register
should be loaded prior to applying any operational command because it will power up in an
unknown state.

The code about the generation of decoded command during the initialization is shown below.

80 always @ (posedge CLK or negedge RESET_N) begin
1 if (RESET_N = 0)

3 REFRESH <=
97 PRECHARGE <=0;
LOAD MODE <=
INIT_REQ <=

182 begin

183 init_timer <=

184 REFRESH <=

185 PRECHARGE <=

186 LOAD MODE <=

187 INIT_REQ <=

188 - end

1 else

150 [H begin

181 if (init_timer < (INIT_PER+:))
192 init_timer <= init_timer+l;
194 if (init_timer < INIT_PER)

135 [begin

- end

2 - else L1f(init_timer —— (INIT PER+Z0))]
20z (] PRECHARGE [pegin

2 REFRESH <=

2 COMMAND DRECHARGE <=

2 LOAD MODE <=

206 INIT REQ <=

207 - end

55

=] Else 1t((init_timer = (INII_BER+20)) 11
(init_timer == (INIT_BER+:0)) ||
(init_timer = (INIT_PER+20)) ||
(init_timer == (INIT_BER+100)) ||
(init_timer == (INIT_BER+120)) ||
8 AUTOREFRHSH (init_timer = (INIT_PER+140)) ||
(init_timer == (INIT_BER+1&0)) ||
| COMMAND (init_timer == (INIT_BER+1:0)))
=) begin
REFRESH <=1;
PRECHARGE <=0;
LOAD_MODE <=0;
INIT_REQ <=0;
L |
Plse 1t (1nit_timer = (INII_FER+¥)
=] begin
LOAD_MODE REFRESH <=0;
PRECHARGE <=0;
COMMAND LOAD_MODE <=1;
INIT_REQ <=0;
L Ena
else
=] begin
REFRESH <=0;

PRECHARGE <=0;

LOAD_MODE <=0;

INIT_REQ <=0;
r end

B end

“end

Figure 7-16 Code Related to Initial Manner Generation

Attention:
1. The clock cycles between each auto refresh is 20 cycles, which is equal to trc of the SDRAM.
2. The parameter INIT_PER in the code is configured in file SDRAM_PARAM.h. The value of
INIT_PER is 25000. Since the module clock frequency of SDRAM_CONTROL_4PORT module is
125MHz, thus 25000 clock cycles is 200us, which is the minimum time required before the first
precharge command is generated.

7.3.4 COMMAND sub module

1. Description

This module uses decoded command signals from CONTROL_INTERFACE sub module to generate
operations conforming to SDRAM protocol and control the signals output to SDRAM. This module
also generates OE signal for data path module to control it. Besides, non-multiplex input address
ADDR is transferred into multiplex address for SDRAM and sent to SA and BA according to the
time.

Attention: the code of this module is not suggested to be modified. You do not need to
understand the internal logic of this module, and the following part can be omitted.

2. Interface

Port Direction | Width | Description

CLK Input 1 Module clock

Module reset

RESET_N Input 1 .
active low, asynchronous

56

SADDR Input ‘ASIZE | Multiplex Address

NOP Input 1 Decoded NOP command

READA Input 1 Decoded READA command

WRITEA Input 1 Decoded WRITEA command

REFRESH Input 1 Decoded REFRESH command
PRECHARGE Input 1 Decoded PRECHARGE command
LOAD_MODE Input 1 Decoded LOAD_MODE command
REF_REQ Input 1 Refresh request

INIT_REQ Input 1 Initial request

PM_STOP Input 1 Page mode stop

REF_ACK Output 1 Refresh request acknowledge

CMD_ACK Output 1 Command acknowledge

OE Output 1 OE signal for DATA_PATH module

SA Output 12 SDRAM address

BA Output 2 SDRAM bank address

CS_N Output 2 le;jelv:ocwhip selects

CKE Output 1 SDRAM clock enable

RAS_N Output 1 SDRAM Row Address Strobe Command
CAS N Output 1 SDRAM Column Address Strobe Command
WE_N Output 1 SDRAM write enable

Table 7-6 COMMAND sub module Interface

3. Function
Generate operations to SDRAM

Operations are generated according to the input decoded command signals. The logic is
generated below. Notice that REFRESH command has higher priority than READA/WRITEA

command.

57

if ((REF_REQ = | REFRESH == 1) & command_done == & do_refresh = & rp_done = // Refresh

& do_reada = & do_writea == 0)
do_refresh <=
else
do_refresh <=
if ((RERDA = 1) & (command_done = 0) & (do_reada = () & (rp_done = 0) & (REF_REQ == 0)) // READR
begin
do_reada <=
ex_read <=
end
else
do_reada <=
if ((WRITER = 1) & (command done == () & (do_writea == 0) & (rp_done = 0) & (REF_REQ == 0)) // WRITEA
begin
do_writea <=
ex_write <=
end
else
do_writea <=
if ((PRECHARGE == 1) & (command done == 0) & (do_precharge == 0)) // PRECHARGE
do_precharge <=
else
do_precharge <=
if ((LOAD_MODE == 1) & (command_done == 0) & (deo_lcad_mode = 0)) // LOADMODE
do_lecad_meode <=
else
do_lcad_mode <=

Figure 7-17 Code Related to Operation Generation

What needs to be noticed is that WRITEA and READA command actually imply an ACTIVE
command first, which is demonstrated in the state diagram below. Thus when the module
receives WRITEA or READA command, which means the interval signal do_wirtea or do_reada is
1, ACTIVE command must be executed first, and then write or read operation are enabled after a
time delay according to CAS configuration of SDRAM.

58

Mode
Register

SELF @

SELF exit
ReF (CEA (Auc)

MES
e IDLE
CKE
ACT Power
Down
OF Acti
Row N 7 F‘ow:f
Activ CKE
. ® Down
857 BST
-
& B\s
«) ‘% Read
& ®
&/d N,
S Read 2 &
= 2 _— READ

S FEAD T suspen

[, > }ge

Write CKE

R READA
& SUSPEND

8

————— Atomatc sequence

—p Manual Input

Figure 7-18 SDRAM State Diagram

The code below tracks the time between the ACTIVE command and the subsequent WRITE or
READ command. The shift register is set using the configuration register setting SC_RCD. The shift
register is loaded with a single '1' with the position within the register dependent on SC_RCD.
When the '1' is shifted out of the register it sets so_rw which triggers a write or reada command.

59

340
341
342
343
344

343
344
345
346
347
348
3453
350
351
352
353
354
355
356
357
358
358
360
36l

always E(p dge CLK or d RESET_N)
begin
E if (RESET_N == 0)
= begin
rw_shift <= 0;
do_rw <= 0;
- end
else
[—] begin
if ((do_reada = 1) | (do_writea = 1))
=] begin
if (SC_RCD = 1) // Set the shift register
do_rw <= 1;
else if (SC_RCD =
rw_shift <= 1;
else if (SC_RCD ==
rw_shift <= 2;
E end
else
=] begin
rw_shift <= (rw_shift>>1);
do_rw <= rw_shift[0];
E end
r end

“end

always € (posedge CLK or negedge RESET_N)

begin
if (RESET_N == 0)
= begin
rw_shift <= 0;
do_xrw <= 0;
£ end
else
= begin
if ((do_reada == 1) | (do_writea == 1))
=] begin
if (SC_RCD = 1) // Set the shift register
do_xw <= 1;
else if (SC_RCD = 2)
rw_shift <= 1;
else if (SC_RCD ==
rw_shift <=
= end
else
= begin
rw_shift <= (rw_shift>>1);
do_rw <= rw_shift[0];
= end
- end
—end

Figure 7-19 Code Related to Timing Tracking After ACTIVE Command

60

OE signal

OE is a control signal of DATA_PATH module. OE is 1 when write operation is executed, and OE is
0 when read operation is executed. For normal burst write (SC_PM=0) the duration of OE is
dependent on the configured burst length. For page mode accesses (SC_PM=1) the OE signal is
turned on at the start of the write command and is left on until a PRECHARGE (page burst
terminate) is detected.

Address
Non-multiplex address SADDR is transferred into multiplex address for SDRAM and sent to SA
and BA according to the time. The way how ADDR is divided into bank address, row address and

column address is shown in the code below:

1 assignment of the row address bits from SADDR

134 assign rowaddr = SADDR["ROWSTART + "ROWSIZE - ROWSTART]
136 // assignment of the ccolumn address bits

137 assign coladdr = SADDR['COLSTART + “COLSIZE - : "COLSTART] ;

139 // assignment of the bank address bits
140 assign bankaddr = SADDR[BANKSTART + “BANKSIZE - 1: BANKSTART];

Figure 7-20 Code Related to Address Assignment

The parameter ROWSTART, ROWSIZE, COLSTART, COLSIZE, BANKSTART, BANKSIZE are defined in
the file Sdram_Param.h.

Acknowledge signal

When a REFRESH request generated by the internal refresh timer circuit in the
COTROL_INTERFACE module is received, this module will generate a refresh acknowledge signal
REF_ACK to the CONTROL_INTERFACE module. When other kinds of command is received, this
module will generate a command acknowledge signal CMD_ACK to the CONTROL_INTERFACE
module. The code about this part is shown below.

always E€(posedge CLK or negedge RESET_N)

begin
if (RESET_N = 0)
=] begin

CM_ACK <= 0;
REF_ACK <= 0;

else

i begin
if (do_refresh = & REF_REQ == 1) // Internal refresh timer refresh request
REF_ACK <= 1;
= else if ((do_refresh == 1) | (do_reada = 1) | (do_writea == 1) | (do_precharge = 1) / S¥LEFRA commands
r | (do_load_meode))
CM_ACK <= 1;

else
=) begin
REF_ACK <= 0;
CM_ACK <= 0;

Figure 7-21 Code Related to Acknowledge Signals Generation

61

RAS_N, CAS_N, and WE_N signal
These signals are generated according to the issued command and the table below. For more
details, please refer to 1S42R16320D.pdf, Page 9

COMMAND TRUTH TABLE

CKE A12, A11

Function n-1 WE BA1 BAO A10 A9-A0
~Device deselact (DESL) X X

No operation (NOP)

Burst stop (BST)

Read

Read with auto precharge

Writa

Writa with auto pracharge

Bank activate (ACT)

Pracharge select bank (PRE)

Pracharge all banks (PALL)

CBR Auto-Refresh (REF)

Self-Refresh (SELF)

Mode register set (MRS) - x
Note: H=ViH, L=ViL x=ViH or Vi, V = Valid Data.

2|
w|

[l el el el il [l e)) [I I e i)./>JH

€I
X
x

I % % | % [x [X% |[x |[x |x |x]=>

rrjrjrjrjrjrjrjr||c

r—r—r—r-r—v—r—r—r—r-r—r—:!:,.?,l
[l Ul el S S S el el el G E L E S B B
[l [S e el Il 0 S Il Il e i el e
x| % | % |<|<|<|<|<|=<|X |X |X
[l B B B S e e I) B
FIX | X |E|lr|<|T|r|X|r|x|x
<X X [% |X [€|<|<|<|<|x|x

Figure 7-22 Command Truth Table

The code of this part is shown below.

43¢ //Generate the appropriate logic levels on RAS N, CAS_N, and WE_N

437 //depending on the issued command.

438 74

433 =] if (do_refresh==1) begin // Refresh: S5=00, RAS=0, CAS=0, WE=1
440 RAS_N <= 0;

441 CAS N <= 0;

442 WEN <= 1;

443 - end

444 = else if ((dc_precharge==l) & ((ce4 == 1) | (xw_£flag == 1))) begin // burst terminate if write is active
445 RAS N <= 1;

446 CAS N <= 1;

447 WEN <=0;

448 E end

449 = else if (do_precharge==l) begin // Breshaxge All: S=00, RAS=0, CAS=1, WE=0
450 RAS_N <= 0;

451 CAS N <= 1;

452 WEN <=0;

453 - end

454 = else if (do_load_mode==1) begin // Mode Write: S=00, RAS=0, CAS=0, WE=0
455 RAS_N <= 0;

456 CAS N <= 0;

457 WEN <= 0;

458 r end

458 [l:] else if (do_reada = 1 | do_writea = 1) begin // Activate: S=01 or 10, RAS=0, CAS=1l, WE=l
460 RAS N <= 0;

461 CAS N <= 1;

462 WEN <= 1;

463 - end

464 = else if (de_rw == 1) begin // Read/Write: S=01 or 10, RAS=1l, CAS=0, WE=0 or 1
465 RAS N <= 1;

466 CAS_N <= 0;

467 WE_N <= rw_£flag;

468 - end

469 [H else if (deo_initial ==1) begin

470 RAS N <= 1;

471 CAS N <= 1;

472 WEN <= 1;

473 E end

474 = else begin // No Operation: RAS=1l, CAS=1l, WE=1l
47s RAS N <= 1;

476 CAS N <= 1;

477 WE_N <= 1;

478 - end

Figure 7-23 Code Related to RAS N, CAS N, WE_N Signals Assignment

62

(null)://(null)Related%20Data/IS42R16320D.pdf

