
INTERFACING WITH

INPUT SIGNALS

I) Mechanical Switch Bouncing

• Most mechanical switches
“bounce” rapidly while
transitioning between an
open and closed state

• These bounces can
produce:
1) runt pulses that do not

reach a full “0” or “1”
state, and/or

2) rapid bouncing between
“0” and “1” states

© B. Baas 96

[https://www.maximintegrated.com/en/app-notes/index.mvp/id/287]

A rising-edge switch bounce for a small pushbutton switch with

an approximate 5 ms bounce interval and 10 transitions

A rising-edge switch bounce for a 5A contact relay

with an approximate 5.5 ms bounce interval

and 20 full-amplitude transitions

I) Input De-Bouncing

• De-bouncing solutions are typically best designed
with circuits such as:
1. A low pass filter such as a resistor-capacitor (RC) filter

• The RC product can not be too small (allows bounces
through) or too large (long rise/fall time and slow response)

2. A double-throw switch with an attached SR latch

• An excellent solution if the switch type and latch are available

3. Some type of sampling or gating function that is tailored to
the bouncing characteristics

• The DE-10 Lite board contains debouncing circuits
for all SW switches and KEY buttons

© B. Baas 97

II) Edge Detection

• In many problems, a circuit needs to take an action
on only a particular edge of a signal—for example, on
only the rising edge of a signal

• For example, if a signal will be asserted many cycles
but it is desired to count the event only once, the
rising or falling edge can be used to trigger the event
rather than the level of the signal

• Example: the key of a keyboard may be sampled at a
very high rate but only one character should be
processed each time a key is pressed

• Example: “mouse up” event

© B. Baas 98

II) Edge Detection
Method 1

• Edge detection solutions are probably best
implemented with digital logic

1. Extra states can be added to the state machine which
processes the input signal (or a dedicated state
machine can be made)
– The general idea is to transition to a dedicated state on the

first edge of the input (e.g., rising edge), stay there while
the input is at that level, and then return to the original
state on the second edge of the input (e.g., falling edge)

© B. Baas 99

II) Edge Detection
Method 1

• For example, design a keyboard controller that
increments a counter only once when a key is pressed
even though it may be pressed for 1000s of clock cycles

• key = 1, key is pressed

• key = 0, key is not pressed

© B. Baas 100

PRESSED keyWAIT

key

key

key

II) Edge Detection
Method 1

• In this example code, count is incremented on exactly
the same cycle as when state changes to the PRESSED
state

© B. Baas 101

always @(*) begin

// defaults

state_c = state;

count_c = count; // default do not add

case(state)

WAIT: begin

if (key == 1’b1) begin

state_c = PRESSED;

count_c = count + 8’h01; // Add +1 here!

end

end

PRESSED: begin

// Do nothing special when key==1

if (key == 1’b0) begin

state_c = WAIT;

end

end

endcase

end // always

• Of course this
is actually
done by setting
count_c and
state_c the
previous cycle

II) Edge Detection
Method 2

2. A circuit can look at both the current and previous
value of a signal and output a single-cycle pulse on
the desired edge(s). Designs can be made with either
Mealy or Moore style outputs as shown on later
slides.

© B. Baas 102

Detecting Signal Transitions

• The goal is to design
a state machine/circuit
that is sensitive to only
a change in an input
signal (e.g., change from 0 to 1)

• It can be awkward to
design an FSM for
signal transitions

• Despite being highly
tempting, we can not use
the signal itself as the clock of an edge-triggered flip-flop—this would
lead to poor timing and unreliable circuits. This would also break a
fundamental rule discussed in the Clock section

• The key idea is to look for the point in time when the value from the
previous clock cycle is a 0 and the value from the current cycle is a 1

• This implies we need to save the old value (in a flip-flop)

[M. Hildebrand]

© B. Baas 103

Edge Detection Circuit Solution 1:
Mealy, Early Input Arrival

[M. Hildebrand]

© B. Baas 104

Edge Detection Circuit Solution 1:
Mealy, Late Input Arrival

[M. Hildebrand]

© B. Baas 105

If needed, Rising Transition can
be registered (Moore)

[M. Hildebrand]

© B. Baas 106

Circuit operates the same with late
arriving inputs (Moore)

[M. Hildebrand]

© B. Baas 107

Example Verilog module for edge
detection with registered output (Moore)

module edge_detection (

input clock,

input input_signal,

output rising_transition

);

// declarations

reg n;

reg rising_transition;

wire rising_transition_c;

// logic to detect 0 in previous cycle and 1 in current cycle

assign rising_transition_c = ~n & input_signal;

// flip-flop instantiations

always @(posedge clock) begin

n <= #1 input_signal;

rising_transition <= #1 rising_transition_c;

end

endmodule

[M. Hildebrand]

© B. Baas 108

Experimenting with SW and KEY
Inputs on the DE10-Lite Board

• An experiment was performed on the DE10-Lite
board counting the number of 1) edges, and 2) cycles
the signal is high for both KEY buttons and SW
switches using a 50 MHz clock

© B. Baas 109

KEY Button SW Switch

Level count 8,432,414

(0.17 seconds)

20,753,489

(0.42 seconds)

Edge count 1 1

[Tim Andreas, 2018/05/18]

Verilog Code

© B. Baas 110

module edge_detection (

input clock,

input input_signal,

output reg rising_transition

);

reg n;

wire rising_transition_c;

// logic to detect 0 in previous cycle and 1 in current cycle

assign rising_transition_c = ~n & input_signal;

always @(posedge clock) begin

n <= #1 input_signal;

rising_transition <= #1 rising_transition_c;

end

endmodule

module level_count (

input clock,

input input_signal,

output reg [31:0] cycles_high

);

reg [31:0] cycles_high_c;

//Every clock cycle, check if the input signal is high.

//Increment the level counter if high, hold if low.

always @(*) begin

if (input_signal)

cycles_high_c = cycles_high + 1'b1;

else

cycles_high_c = cycles_high;

end

//Instantiate flip-flops

always @(posedge clock) begin

cycles_high <= cycles_high_c;

end

endmodule

// This code is generated by Terasic System Builder

module top (

//////////// CLOCK //////////

input ADC_CLK_10,

input MAX10_CLK1_50,

input MAX10_CLK2_50,

//////////// SEG7 //////////

output [7:0] HEX0,

output [7:0] HEX1,

output [7:0] HEX2,

output [7:0] HEX3,

output [7:0] HEX4,

output [7:0] HEX5,

//////////// KEY //////////

input [1:0] KEY,

//////////// LED //////////

output [9:0] LEDR,

//////////// SW //////////

input [9:0] SW

);

//----- reg and wire declarations

// alias for clock signal

wire clk = MAX10_CLK1_50;

wire reset = ~KEY[0];

// input/output registers

reg [1:0] KEY_post;

reg [9:0] SW_post;

wire [31:0] SW_level_count;

wire [31:0] KEY_level_count;

reg [7:0] SW_edge_count;

reg [7:0] KEY_edge_count;

reg [23:0] hex_input;

//----- Main

hex hex0(.in(hex_input[3:0]), .hex(HEX0));

hex hex1(.in(hex_input[7:4]), .hex(HEX1));

hex hex2(.in(hex_input[11:8]), .hex(HEX2));

hex hex3(.in(hex_input[15:12]), .hex(HEX3));

hex hex4(.in(hex_input[19:16]), .hex(HEX4));

hex hex5(.in(hex_input[23:20]), .hex(HEX5));

level_count (.clock(clk), .input_signal(SW_post[9]), .cycles_high(SW_level_count));

level_count (.clock(clk), .input_signal(~KEY_post[1]), .cycles_high(KEY_level_count));

edge_detection (.clock(clk), .input_signal(SW_post[9]), .rising_transition(SW_edge));

edge_detection (.clock(clk), .input_signal(~KEY_post[1]), .rising_transition(KEY_edge));

always @(*) begin

case (SW[2:0])

3'b000: hex_input = {16'h0000, SW_edge_count};

3'b001: hex_input = {16'h0000, KEY_edge_count};

3'b010: hex_input = SW_level_count[23:0];

3'b011: hex_input = KEY_level_count[23:0];

3'b100: hex_input = {16'h0000, SW_edge_count};

3'b101: hex_input = {16'h0000, KEY_edge_count};

3'b110: hex_input = {16'h0000, SW_level_count[31:24]};

3'b111: hex_input = {16'h0000, KEY_level_count[31:24]};

endcase

end

always @(posedge clk) begin

//register inputs for better timing

KEY_post <= KEY;

SW_post <= SW;

KEY_edge_count <= KEY_edge_count + KEY_edge;

SW_edge_count <= SW_edge_count + SW_edge;

end

endmodule

[Tim Andreas, 2018/05/18]

Best Solution

• In some cases there can be a race condition in the way
the synthesis tool forms the circuit

• Two solutions were found:
1. registering the inputs as they arrive from the SW or KEY

2. registering the output of the edge detector circuit

• Registering the output was observed to always avoid
the issue but the race condition is not guaranteed to
be avoided

• The best solution is to register the inputs as soon as
they arrive

© B. Baas 111

