
FINITE STATE MACHINES

II. General FSMs
The State of the Machine

• The state can be encoded with a compact binary
representation
– Ex: 5 states

– Minimum number of state bits = ceil(log2(5)) = 3 bits

– Total possible states with 3 bits = 23 = 8

– There is probably limited value in optimizing which 5 of the
8 possible states you choose despite the fact you may have
spent time looking at this in EEC 18. You could try in a
critical situation.

© B. Baas 234

II. General FSMs
The State of the Machine

• The state can be encoded with a “one-hot” representation
• Ex: 5 states

• Number of state bits = Number of states = 5 bits

• No min, no max, no optimizing

• 00001

• 00010

• 00100

• 01000

• 10000

+ Zero-time state decode logic

+ Very fast state increment (shift not addition)

– Not practical for a very large number of states

© B. Baas 235

II. General FSMs
The I/O of the Machine

• Typically the outputs of FSMs are derived from the
state (Moore machines) but often not a copy of the
state as is often true with counters
– Ex: counter out = count;

– Ex: FSM out = (state == DONE) && (x == 8’hF0);

• Moore machines have outputs that are a function of
the state only

• Mealy machines have outputs that are functions of
the inputs which creates a purely-combinational path
through the FSM from input to output which could
limit the maximum clock frequency

© B. Baas 236

II. General FSMs
3 Key Signal Groups

• One of the first steps in the design process is to identify and
write down the following independent key signal names and
word widths:

1. inputs

2. state

1. FSM state

2. counter(s)

3. outputs

© B. Baas 237

state_c
state

Next State

logicabc
xyz

clock

reset Output

logic alarm
transmit

II. General FSMs
Major Components

• All FSMs contain two major circuit structures

1) State register (row of FFs with their
clocks tied together)

2) Next State combinational logic

• We could also include a
third—output logic which is
a function of state (Moore) or
state and inputs (Mealy)

• Both (1) and (2) are usually coded
with always blocks in verilog

• Always keep a clear picture of the output(s) and input(s) of each

• The Next State logic in this example:
– output(s) state_c

– input(s) state, reset, abc, xyz

© B. Baas 238

state_c
state

Next State

logicabc
xyz

clock

reset

II. General FSMs
Next State Logic

• Give thought to the logic you are creating

• In many cases, it will be best to write statements that directly
use inputs of the Next State logic rather than other internal
combinational logic variables. For example, write logic as a function
of reset, abc, xyz, and/or state; rather than state_c.

• In the example below, the longest path from the input(s) to the
output state_c passes through three adders and a case selector (mux)

© B. Baas 239

//--- Next State combinational logic

always @(state or xyz or abc or reset) begin

 ...

 // logic

 d = abc + 8’h01; // no issues

 e = d + 8’h01; // creates state + 2

 f = e + 8’h01; // creates state + 3

 case (state) begin

 3’b000: state_c = d;

 3’b001: state_c = e;

 default: state_c = f;

 endcase

 ...

end

state_c
state

Next State

logicabc
xyz

reset

II. General FSMs
Next State Logic

• In the example below, the longest path from the input(s) to the
output state_c passes through one adder and a case selector
(mux)

• Even though the critical path is far shorter than the critical path
of the previous example, the function is exactly the same

© B. Baas 240

//--- Next State combinational logic

always @(freq or xyz or abc or reset) begin

 ...

 // logic

 d = abc + 8’h01; // no issues

 e = abc + 8’h02; // creates state + 2

 f = abc + 8’h03; // creates state + 3

 case (state) begin

 3’b000: state_c = d;

 3’b001: state_c = e;

 default: state_c = f;

 endcase

 ...

end

state_c
state

Next State

logicabc
xyz

reset

//--- Next State combinational logic

always @(freq or xyz or abc or reset) begin

 // defaults

 freq_c = freq; // an example

 // logic

 case (freq)

 ...

 endcase

 // logic

 if (xyz==4’b0010) begin

 ...

 end

 // reset logic is usually last for highest priority

 if (reset == 1’b1) begin

 freq_c = 3’b000;

 end

end

© B. Baas 241

II. General FSMs
Next State Logic

freq_c freq
Next State

logicabc
xyz

clock

reset

• Example Next State combinational circuit with output freq_c
– Always declare default values at beginning of always blocks

– Use all of the best combinational logic design practices

h
ig

h
er p

rio
rity

 o
r p

reced
en

ce

g
ets th

e “fin
al w

o
rd

”

© B. Baas 242

1) Default: state_c = state;

2) case (state)

3) STATE: begin end for each state. Partition design by state.
(In contrast, in traditional EEC18-style design, we partition the overall design by bits of the state.)

4) if (reset == 1’b1) at the end of the combinational always block

5) Instantiate FF register(s) in a separate always block

Five Things in Virtually Every
Well-Designed Verilog State Machine

state_c
state

clockreset

Next State

logic

// Next State combinational logic

always @(state or reset or ...) begin

 // defaults

 state_c = state; // hold previous state

 case (state) begin

 INIT: begin

 ...

 end

 // Add a case target for each state

 default: c_freq = 3’bxxx; // error case

 endcase

 // reset logic often last for highest priority

 if (reset == 1’b1) begin

 state_c = 3’b000;

 end

end

// instantiate the state register

always @(posedge clock) begin

 state <= #1 state_c;

end

© B. Baas 243

1) In the default section, it is probably a good idea to have an

auto-increment or auto-decrement statement

– count_c = count + 8’h01; // Example increment

– count_c = count - 8’h01; // Example decrement

2) In the “idle” or “wait” state, it is probably a good idea to hold

the counter value to eliminate unnecessary toggling to reduce

power dissipation

– count_c = count; // Example hold counter value

– count_c = 8’h00; // Example hold counter at zero

Characteristics of a Well-Designed Verilog
State Machine with Integrated Counters

© B. Baas 244

Finite State Design Example

• There are four states
– IDLE

• Go to PREP when go is asserted

– PREP

• Do something for 10 cycles

• Then go to JOB1 if x <= 5

• Then go to JOB2 if x > 5

– JOB1

• Do something for 5 cycles

• Then go to IDLE

– JOB2

• Do something for 20 cycles

• Then go to IDLE

• reset at any time returns controller to IDLE state

© B. Baas 245

State Diagram

• State diagram

IDLE

PREP

JOB1 JOB2

go

reset

After 10~

if x ≤ 5

10 cycles

5 cycles

20 cycles

go

After 10~

if x > 5

© B. Baas 246

Control Block Example Solution
(There are many solutions!)

• What are the registers (the values that need to be remembered)?
1. state for the main controlling state machine

2. count to count number of cycles in some of the states

• State registers

– Choose two bits (obviously the minimum) for the four states

• Counter(s)

– Choose three counters, one for each use – wasteful

– Choose one five bit counter since states are independent and counter
can be shared between different states

– Counting down may be slightly better (simpler shared comparator
for all cases that compare with zero when done)

• Keep registers (flip-flops) separate from state machine logic

– Always do this for this class

• It is normally clearer to define states with names (such as IDLE)
rather than constants (such as 2'b01)

© B. Baas 247

Circuit Diagram

• The Circuit diagram in this case is very similar to the detailed block diagram

• Inputs reset, go, x[7:0]

• FFs state[1:0], count[4:0]

• Outputs not specified, probably driven by state[1:0]

state_c state[1:0]

clock

reset “Next State”

logicgo
x count_c count[4:0]

© B. Baas 248

Example Verilog Implementation
fsm.v

parameter IDLE = 2'h0; // constants in hex notation

parameter PREP = 2'h1;

parameter JOB1 = 2'h2;

parameter JOB2 = 2'h3;

reg [1:0] state, state_c; // declare both FF regs

reg [4:0] count, count_c; // and comb. logic regs

// Combinational logic for state machine

always @(state or count or go or x or reset) begin

 // defaults (place first)

 state_c = state; // default same state

 count_c = count - 5'b00001; // default count down

 // main state machine logic

 case (state)

 IDLE: begin

 if (go == 1'b1) begin

 state_c = PREP;

 count_c = 5'd09; // constant in decimal

 end

 else begin

 count_c = 5'd00; // only for lower power

 end

 end

 PREP: begin

 if (count == 5'b00000) begin

 if (x <= 8'd005) begin // assume 8-bit x

 state_c = JOB1; // goto JOB1

 count_c = 5'd04;

 end

 else begin // goto JOB2

 state_c = JOB2;

 count_c = 5'd19;

 end

 end

 end

JOB1: begin

 if (count == 5'b00000) begin

 state_c = IDLE;

 // count will underflow to -1 for 1~, no prob

 end

 end

 JOB2: begin

 if (count == 5'b00000) begin

 state_c = IDLE;

 // count will underflow to -1 for 1~, no prob

 end

 end

 default: begin // good practice, but not used here

 state_c = 2'bxx; // better for testing

 state_c = IDLE; // another option

 end

 endcase

 // reset logic (place last to override other logic)

 if (reset == 1'b1) begin

 state_c = IDLE;

 count_c = 5'b00000;

 end

end // end of always block

// Instantiates registers (flip-flops)

always @(posedge clk) begin

 state <= #1 state_c;

 count <= #1 count_c;

end

I think it is better

to put reset logic

inside the control

logic rather than

with the FF

declaration

© B. Baas 249

NCVerilog simulation

• reset_cold to reset the clock oscillator

• reset to reset the state machine

• IDLE → PREP → JOB1 (since x[7:0] ≤ 8’d05)

© B. Baas 250

Design Compiler Synthesis
Complete Gate Netlist

 DFF_X1 \count_reg[2] (.D(count_c[2]), .CK(clk), .Q(count[2]), .QN(n35));

 DFF_X1 \count_reg[3] (.D(count_c[3]), .CK(clk), .Q(count[3]));

 DFF_X1 \count_reg[4] (.D(count_c[4]), .CK(clk), .Q(count[4]));

 DFF_X1 \count_reg[1] (.D(count_c[1]), .CK(clk), .Q(count[1]));

 DFF_X1 \count_reg[0] (.D(count_c[0]), .CK(clk), .Q(count[0]), .QN(N8));

 XOR2_X1 U33 (.A(count[3]), .B(n33), .Z(n29));

 XNOR2_X1 U34 (.A(count[4]), .B(n34), .ZN(n30));

 OAI22_X1 U36 (.A1(n21), .A2(n42), .B1(n40), .B2(n18), .ZN(count_c[2]));

 NOR3_X1 U41 (.A1(count[1]), .A2(count[0]), .A3(n26), .ZN(n17));

 OR3_X1 U42 (.A1(count[4]), .A2(count[3]), .A3(count[2]), .ZN(n26));

 OAI22_X1 U45 (.A1(reset), .A2(n20), .B1(n21), .B2(n30), .ZN(count_c[4]));

 OAI22_X1 U46 (.A1(reset), .A2(n22), .B1(n21), .B2(n29), .ZN(count_c[3]));

 OAI22_X1 U47 (.A1(reset), .A2(n20), .B1(n21), .B2(n31), .ZN(count_c[1]));

 NOR2_X1 U53 (.A1(reset), .A2(n25), .ZN(count_c[0]));

 NOR2_X1 U56 (.A1(count[1]), .A2(count[0]), .ZN(n32));

 AOI21_X1 U57 (.B1(count[0]), .B2(count[1]), .A(n32), .ZN(n31));

 NOR2_X1 U60 (.A1(count[3]), .A2(n33), .ZN(n34));

DFF_X1 \state_reg[1] (.D(n28), .CK(clk), .Q(state[1]), .QN(n4));

DFF_X1 \state_reg[0] (.D(n27), .CK(clk), .Q(state[0]), .QN(n7));

NAND3_X1 U27 (.A1(n17), .A2(state[0]), .A3(N23), .ZN(n16));

NOR2_X1 U43 (.A1(n7), .A2(state[1]), .ZN(n23));

AOI22_X1 U48 (.A1(state[1]), .A2(n17), .B1(go), .B2(n4), .ZN(n19));

NAND3_X1 U28 (.A1(n43), .A2(n41), .A3(n19), .ZN(n14));

NAND3_X1 U29 (.A1(n17), .A2(n41), .A3(n23), .ZN(n18));

NAND2_X1 U30 (.A1(n24), .A2(n41), .ZN(n21));

NAND3_X1 U31 (.A1(n7), .A2(n4), .A3(go), .ZN(n22));

NAND3_X1 U32 (.A1(n17), .A2(n40), .A3(n23), .ZN(n20));

INV_X1 U35 (.A(n20), .ZN(n39));

INV_X1 U37 (.A(N10), .ZN(n42));

INV_X1 U38 (.A(N23), .ZN(n40));

INV_X1 U39 (.A(n23), .ZN(n43));

INV_X1 U40 (.A(n36), .ZN(n37));

OAI21_X1 U44 (.B1(n17), .B2(n43), .A(n4), .ZN(n24));

OAI21_X1 U49 (.B1(n7), .B2(n14), .A(n15), .ZN(n27));

NAND4_X1 U50 (.A1(n16), .A2(n14), .A3(n41), .A4(n4), .ZN(n15));

OAI21_X1 U51 (.B1(n4), .B2(n14), .A(n18), .ZN(n28));

INV_X1 U52 (.A(reset), .ZN(n41));

AOI211_X1 U54 (.C1(N8), .C2(n24), .A(n39), .B(n38), .ZN(n25));

INV_X1 U55 (.A(n22), .ZN(n38));

NAND2_X1 U58 (.A1(n32), .A2(n35), .ZN(n33));

OAI21_X1 U59 (.B1(n32), .B2(n35), .A(n33), .ZN(N10));

AOI211_X1 U61 (.C1(x[2]), .C2(x[1]), .A(x[4]), .B(x[3]), .ZN(n36));

NOR4_X1 U62 (.A1(n37), .A2(x[5]), .A3(x[7]), .A4(x[6]), .ZN(N23));

Related to count Related to state

Relationship

is unclear

	Slide 233: FINITE STATE MACHINES
	Slide 234: II. General FSMs The State of the Machine
	Slide 235: II. General FSMs The State of the Machine
	Slide 236: II. General FSMs The I/O of the Machine
	Slide 237: II. General FSMs 3 Key Signal Groups
	Slide 238: II. General FSMs Major Components
	Slide 239: II. General FSMs Next State Logic
	Slide 240: II. General FSMs Next State Logic
	Slide 241: II. General FSMs Next State Logic
	Slide 242: Five Things in Virtually Every Well-Designed Verilog State Machine
	Slide 243: Characteristics of a Well-Designed Verilog State Machine with Integrated Counters
	Slide 244: Finite State Design Example
	Slide 245: State Diagram
	Slide 246: Control Block Example Solution (There are many solutions!)
	Slide 247: Circuit Diagram
	Slide 248: Example Verilog Implementation fsm.v
	Slide 249: NCVerilog simulation
	Slide 250: Design Compiler Synthesis Complete Gate Netlist

