
FINITE STATE MACHINES



II. General FSMs
The State of the Machine

• The state can be encoded with a compact binary 
representation
– Ex: 5 states

– Minimum number of state bits = ceil(log2(5)) = 3 bits

– Total possible states with 3 bits = 23 = 8

– There is probably limited value in optimizing which 5 of the 
8 possible states you choose despite the fact you may have 
spent time looking at this in EEC 18. You could try in a 
critical situation.
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II. General FSMs
The State of the Machine

• The state can be encoded with a “one-hot” representation
• Ex: 5 states

• Number of state bits = Number of states = 5 bits

• No min, no max, no optimizing

• 00001

• 00010

• 00100

• 01000

• 10000

+ Zero-time state decode logic

+ Very fast state increment (shift not addition)

– Not practical for a very large number of states
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II. General FSMs
The I/O of the Machine

• Typically the outputs of FSMs are derived from the 
state (Moore machines) but often not a copy of the 
state as is often true with counters
– Ex: counter out = count;

– Ex: FSM  out = (state == DONE) && (x == 8’hF0);

• Moore machines have outputs that are a function of 
the state only

• Mealy machines have outputs that are functions of 
the inputs which creates a purely-combinational path 
through the FSM from input to output which could 
limit the maximum clock frequency
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II. General FSMs
3 Key Signal Groups

• One of the first steps in the design process is to identify and 
write down the following independent key signal names and 
word widths:

1. inputs

2. state

1. FSM state

2. counter(s)

3. outputs
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state_c
state

Next State

logicabc
xyz

clock

reset Output

logic alarm
transmit



II. General FSMs
Major Components

• All FSMs contain two major circuit structures

1) State register (row of FFs with their 
clocks tied together)

2) Next State combinational logic

• We could also include a 
third—output logic which is
a function of state (Moore) or
state and inputs (Mealy)

• Both (1) and (2) are usually coded 
with always blocks in verilog

• Always keep a clear picture of the output(s) and input(s) of each

• The Next State logic in this example:
– output(s) state_c

– input(s) state, reset, abc, xyz
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state_c
state

Next State

logicabc
xyz

clock

reset



II. General FSMs
Next State Logic

• Give thought to the logic you are creating

• In many cases, it will be best to write statements that directly 
use inputs of the Next State logic rather than other internal 
combinational logic variables. For example, write logic as a function 
of reset, abc, xyz, and/or state; rather than state_c.

• In the example below, the longest path from the input(s) to the 
output state_c passes through three adders and a case selector (mux)
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//--- Next State combinational logic

always @(state or xyz or abc or reset) begin

   ...

  

   // logic

   d = abc + 8’h01;   // no issues

   e = d + 8’h01;     // creates state + 2

   f = e + 8’h01;     // creates state + 3

   case (state) begin

      3’b000:  state_c = d;

      3’b001:  state_c = e;

      default: state_c = f;

   endcase

   ...

end

state_c
state

Next State

logicabc
xyz

reset



II. General FSMs
Next State Logic

• In the example below, the longest path from the input(s) to the 
output state_c passes through one adder and a case selector 
(mux)

• Even though the critical path is far shorter than the critical path 
of the previous example, the function is exactly the same
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//--- Next State combinational logic

always @(freq or xyz or abc or reset) begin

   ...

  

   // logic

   d = abc + 8’h01;   // no issues

   e = abc + 8’h02;   // creates state + 2

   f = abc + 8’h03;   // creates state + 3

   case (state) begin

      3’b000:  state_c = d;

      3’b001:  state_c = e;

      default: state_c = f;

   endcase

   ...

end

state_c
state

Next State

logicabc
xyz

reset



//--- Next State combinational logic

always @(freq or xyz or abc or reset) begin

   // defaults

   freq_c = freq;   // an example

  

   // logic

   case (freq)

      ...

   endcase

   // logic

   if (xyz==4’b0010) begin

      ...

   end

   // reset logic is usually last for highest priority

   if (reset == 1’b1) begin

      freq_c = 3’b000;

   end

end
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II. General FSMs
Next State Logic

freq_c freq
Next State

logicabc
xyz

clock

reset

• Example Next State combinational circuit with output  freq_c
– Always declare default values at beginning of always blocks

– Use all of the best combinational logic design practices
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1) Default:  state_c = state;

2) case (state)

3) STATE: begin ........... end for each state. Partition design by state. 
(In contrast, in traditional EEC18-style design, we partition the overall design by bits of the state.)

4) if (reset == 1’b1) at the end of the combinational always block

5) Instantiate FF register(s) in a separate always block

Five Things in Virtually Every 
Well-Designed Verilog State Machine

state_c
state

clockreset

Next State

logic

// Next State combinational logic

always @(state or reset or ...) begin

   // defaults

   state_c = state;   // hold previous state

  

   case (state) begin

      INIT: begin

      ...

      end

      

      // Add a case target for each state

      

      default: c_freq = 3’bxxx;   // error case

   endcase

   // reset logic often last for highest priority

   if (reset == 1’b1) begin

      state_c = 3’b000;

   end

end

// instantiate the state register

always @(posedge clock) begin

   state  <= #1  state_c;

end
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1) In the default section, it is probably a good idea to have an 

auto-increment or auto-decrement statement

– count_c = count + 8’h01;   // Example increment

– count_c = count - 8’h01;   // Example decrement

2) In the “idle” or “wait” state, it is probably a good idea to hold 

the counter value to eliminate unnecessary toggling to reduce 

power dissipation

– count_c = count;   // Example hold counter value

– count_c = 8’h00;   // Example hold counter at zero

Characteristics of a Well-Designed Verilog 
State Machine with Integrated Counters
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Finite State Design Example 

• There are four states
– IDLE

• Go to PREP when go is asserted

– PREP

• Do something for 10 cycles

• Then go to JOB1 if x <= 5

• Then go to JOB2 if x > 5

– JOB1

• Do something for 5 cycles

• Then go to IDLE

– JOB2

• Do something for 20 cycles

• Then go to IDLE

• reset at any time returns controller to IDLE state
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State Diagram

• State diagram

IDLE

PREP

JOB1 JOB2

go

reset

After 10~

if x ≤ 5

10 cycles

5 cycles

20 cycles

go

After 10~

if x > 5
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Control Block Example Solution
(There are many solutions!)

• What are the registers (the values that need to be remembered)?
1. state for the main controlling state machine

2. count to count number of cycles in some of the states

• State registers

– Choose two bits (obviously the minimum) for the four states

• Counter(s)

– Choose three counters, one for each use – wasteful

– Choose one five bit counter since states are independent and counter 
can be shared between different states

– Counting down may be slightly better (simpler shared comparator 
for all cases that compare with zero when done)

• Keep registers (flip-flops) separate from state machine logic

– Always do this for this class

• It is normally clearer to define states with names (such as IDLE) 
rather than constants (such as 2'b01) 
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Circuit Diagram

• The Circuit diagram in this case is very similar to the detailed block diagram

• Inputs reset, go, x[7:0]

• FFs  state[1:0], count[4:0]

• Outputs not specified, probably driven by state[1:0]

state_c state[1:0]

clock

reset “Next State”

logicgo
x count_c count[4:0]
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Example Verilog Implementation 
fsm.v

parameter IDLE = 2'h0;  // constants in hex notation

parameter PREP = 2'h1;

parameter JOB1 = 2'h2;

parameter JOB2 = 2'h3;

reg [1:0]   state, state_c;   // declare both FF regs

reg [4:0]   count, count_c;   // and comb. logic regs 

// Combinational logic for state machine

always @(state or count or go or x or reset) begin

   // defaults (place first)

   state_c = state;             // default same state

   count_c = count - 5'b00001;  // default count down

   

   // main state machine logic

   case (state)

      IDLE: begin

         if (go == 1'b1) begin

            state_c = PREP;

            count_c = 5'd09;    // constant in decimal

         end

         else begin

            count_c = 5'd00;    // only for lower power

         end

       end

      PREP: begin

         if (count == 5'b00000) begin

            if (x <= 8'd005) begin    // assume 8-bit x 

               state_c = JOB1;        // goto JOB1

               count_c = 5'd04;

            end

            else begin                // goto JOB2

               state_c = JOB2;

               count_c = 5'd19;

            end

         end

       end

JOB1: begin

         if (count == 5'b00000) begin

            state_c = IDLE;

            // count will underflow to -1 for 1~, no prob

         end

       end

      JOB2: begin

         if (count == 5'b00000) begin

            state_c = IDLE;

            // count will underflow to -1 for 1~, no prob

         end

       end

      default: begin     // good practice, but not used here

         state_c = 2'bxx;  // better for testing

         state_c = IDLE;   // another option

      end

   endcase

   // reset logic (place last to override other logic)

   if (reset == 1'b1) begin

      state_c = IDLE;

      count_c = 5'b00000;

   end

end   // end of always block

// Instantiates registers (flip-flops)

always @(posedge clk) begin

   state <= #1 state_c;

   count <= #1 count_c;

end

I think it is better 

to put reset logic 

inside the control 

logic rather than 

with the FF 

declaration
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NCVerilog simulation

• reset_cold to reset the clock oscillator

• reset to reset the state machine

• IDLE → PREP → JOB1    (since x[7:0] ≤ 8’d05)
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Design Compiler Synthesis
Complete Gate Netlist

  DFF_X1 \count_reg[2]  ( .D(count_c[2]), .CK(clk), .Q(count[2]), .QN(n35) );

  DFF_X1 \count_reg[3]  ( .D(count_c[3]), .CK(clk), .Q(count[3]) );

  DFF_X1 \count_reg[4]  ( .D(count_c[4]), .CK(clk), .Q(count[4]) );

  DFF_X1 \count_reg[1]  ( .D(count_c[1]), .CK(clk), .Q(count[1]) );

  DFF_X1 \count_reg[0]  ( .D(count_c[0]), .CK(clk), .Q(count[0]), .QN(N8) );

  XOR2_X1 U33 ( .A(count[3]), .B(n33), .Z(n29) );

  XNOR2_X1 U34 ( .A(count[4]), .B(n34), .ZN(n30) );

  OAI22_X1 U36 ( .A1(n21), .A2(n42), .B1(n40), .B2(n18), .ZN(count_c[2]) );

  NOR3_X1 U41 ( .A1(count[1]), .A2(count[0]), .A3(n26), .ZN(n17) );

  OR3_X1 U42 ( .A1(count[4]), .A2(count[3]), .A3(count[2]), .ZN(n26) );

  OAI22_X1 U45 ( .A1(reset), .A2(n20), .B1(n21), .B2(n30), .ZN(count_c[4]) );

  OAI22_X1 U46 ( .A1(reset), .A2(n22), .B1(n21), .B2(n29), .ZN(count_c[3]) );

  OAI22_X1 U47 ( .A1(reset), .A2(n20), .B1(n21), .B2(n31), .ZN(count_c[1]) );

  NOR2_X1 U53 ( .A1(reset), .A2(n25), .ZN(count_c[0]) );

  NOR2_X1 U56 ( .A1(count[1]), .A2(count[0]), .ZN(n32) );

  AOI21_X1 U57 ( .B1(count[0]), .B2(count[1]), .A(n32), .ZN(n31) );

  NOR2_X1 U60 ( .A1(count[3]), .A2(n33), .ZN(n34) );

DFF_X1 \state_reg[1]  ( .D(n28), .CK(clk), .Q(state[1]), .QN(n4) );

DFF_X1 \state_reg[0]  ( .D(n27), .CK(clk), .Q(state[0]), .QN(n7) );

NAND3_X1 U27 ( .A1(n17), .A2(state[0]), .A3(N23), .ZN(n16) );

NOR2_X1 U43 ( .A1(n7), .A2(state[1]), .ZN(n23) );

AOI22_X1 U48 ( .A1(state[1]), .A2(n17), .B1(go), .B2(n4), .ZN(n19) );

NAND3_X1 U28 ( .A1(n43), .A2(n41), .A3(n19), .ZN(n14) );

NAND3_X1 U29 ( .A1(n17), .A2(n41), .A3(n23), .ZN(n18) );

NAND2_X1 U30 ( .A1(n24), .A2(n41), .ZN(n21) );

NAND3_X1 U31 ( .A1(n7), .A2(n4), .A3(go), .ZN(n22) );

NAND3_X1 U32 ( .A1(n17), .A2(n40), .A3(n23), .ZN(n20) );

INV_X1 U35 ( .A(n20), .ZN(n39) );

INV_X1 U37 ( .A(N10), .ZN(n42) );

INV_X1 U38 ( .A(N23), .ZN(n40) );

INV_X1 U39 ( .A(n23), .ZN(n43) );

INV_X1 U40 ( .A(n36), .ZN(n37) );

OAI21_X1 U44 ( .B1(n17), .B2(n43), .A(n4), .ZN(n24) );

OAI21_X1 U49 ( .B1(n7), .B2(n14), .A(n15), .ZN(n27) );

NAND4_X1 U50 ( .A1(n16), .A2(n14), .A3(n41), .A4(n4), .ZN(n15) );

OAI21_X1 U51 ( .B1(n4), .B2(n14), .A(n18), .ZN(n28) );

INV_X1 U52 ( .A(reset), .ZN(n41) );

AOI211_X1 U54 ( .C1(N8), .C2(n24), .A(n39), .B(n38), .ZN(n25) );

INV_X1 U55 ( .A(n22), .ZN(n38) );

NAND2_X1 U58 ( .A1(n32), .A2(n35), .ZN(n33) );

OAI21_X1 U59 ( .B1(n32), .B2(n35), .A(n33), .ZN(N10) );

AOI211_X1 U61 ( .C1(x[2]), .C2(x[1]), .A(x[4]), .B(x[3]), .ZN(n36) );

NOR4_X1 U62 ( .A1(n37), .A2(x[5]), .A3(x[7]), .A4(x[6]), .ZN(N23) );

Related to count Related to state

Relationship 

is unclear
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