
DRIVE THROUGH PROCESSING

© B. Baas

“Drive thru” Data Processing

• Example implementation using a “standard high-level programming
language”

– Allocate memory space for temporary variables

– Perform one complete task at a time and move data between buffers

– Wastes lots of energy (power) on communication and memories

– Ex: a = sin(1:1024);
 b = in(1:1024) .* a(1:1024);
 c = CorrectionTableMem[addr(1:1024)];
 d = b + c;

mem

x

mem mem

+

in

a b

d
c

c
CorrTablesin

b

248

© B. Baas

“Drive thru” Data Processing

• Example implementation for an efficient real-time
processing system
– Process data as it flows by

– Don’t store any more data than is absolutely necessary

– Don’t request/generate data until exactly the cycle it is needed

– Ex:
 a = sin(θ);
 b = in * a;
 c = CorrTableMem[addr(1:1024)];
 d = b + c;

×

corr
table

CorrTable

Addr

+in d

sin

θ

249

© B. Baas

“Drive thru” Data Processing

• I used to call this “Drive by” data processing—not a very nice
name, but it does give a better sense of data flowing along and
getting processed as it passes by

• Don’t picture an In-N-Out Burger
drive thru with cars lined up waiting

• Picture an automatic car wash where
cars get pulled along at a constant
rate and various steps are applied as
cars pass by various stations:
1) Soap applied

2) Brushes

3) Rinse

4) Dry

• Multiple cars are cleaned at the
same time which looks just like
a pipelined datapath

250

© B. Baas

“Drive thru” Data Processing

• The previous diagram illustrates the way data flows
from input (in primarily) to the output (d) but it is not a
valid pipelined block diagram

251

	Slide 247: DRIVE THROUGH PROCESSING
	Slide 248: “Drive thru” Data Processing
	Slide 249: “Drive thru” Data Processing
	Slide 250: “Drive thru” Data Processing
	Slide 251: “Drive thru” Data Processing

