
INTEL/ALTERA M9K & M10K

EMBEDDED MEMORY BLOCKS

Updated January 19, 2022

M9K & M10K “Block RAM”
Overview

• M9K and M10K memories are Intel/Altera’s embedded high-
density memory arrays

– Nearly all modern FPGAs include similar “block memories”

• Each block contains approximately 9000 or 10,000 bits of
memory per block respectively

• They have highly flexible port configurations

• In general, embedded array memories will perform much
better than memories synthesized from LUTs

– Higher clock rates / higher throughput / lower latency

– Lower energy dissipation

– Lower use of other chip resources (e.g., LUTs)

– Exception: very small memories

© B. Baas 120https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

Data Initialization Capabilities

• ROMs
– The embedded memory array is truly an SRAM acting like a

ROM so its contents must be initialized

• SRAM
– Unique to FPGAs, the contents of SRAMs may be initialized at

configuration time

• Contents are specified in verilog in an initial block
– This is the only time you may synthesize an initial block!

• Initialization data contents are specified with a .mif file
by Quartus

© B. Baas 121https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

FPGA Chip

• Max 10 10M50DAF484C7G chip

• Yellow rectangles are M9K memory
blocks

– 182 blocks on each chip

– Total of 182 KBytes (204 KB)

• Light-blue rectangles: Logic Array
Blocks (LAB), each of which contains
16 logic elements (LE), each of which
contains a 4-input LUT, a flip-flop,
and routing muxes

• White rectangles: hardware 18x18
multipliers

• Green rectangle: on-board flash
memory that can store the bit-stream
that programs the FPGA when it is
powered on

• Brown blocks on the border are I/O
ports and drivers

© B. Baas 122

M9K Size Configurations

• Supported
configurations per
memory block

© B. Baas 123https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

Number of words
(words)

Number of bits in words
(bits)

8192 1

4096 2

2048 4

1024 8 or 9

512 16 or 18

256 32 or 36

M10K Size Configurations

• Supported
configurations per
memory block

© B. Baas 124https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

Number of words
(words)

Number of bits in words
(bits)

4096 2 or 1

2048 4 or 5

1024 8 or 10

512 16 or 20

256 32 or 40

M9K & M10K Memory Sizes

• For the Quartus compiler to select an M9K or M10K memory
block, the number of words in a declared verilog memory is
constrained as follows:

1. The number of words in a memory must be a power-of-2

2. The number of words in a memory may be any value if the following option
is set first in Quartus Prime (it is apparently not available in Quartus II):

• Assignments
--> Settings
--> Compiler Settings
--> Advanced Settings (Synthesis)
--> Allow Any RAW Size for

Recognition (Turn On)

© B. Baas 125

https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/mapIdTopics/mwh1465495270874.htm

M9K Interface Modes

• Single port

• Simple dual-port

– Supports simultaneous read and write operations to different
locations

• True dual-port

– Supports any combination of two-port operations: two reads,
two writes, or one read and one write, at two different clock
frequencies

• Shift register

• ROM

– 1 port or 2 port

• FIFO

© B. Baas 126https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

M9K Details

• Independent read-enable and write-enable signals for
each port

• Packed mode in which the M9K memory block is split
into two 4.5 K single-port RAMs

• True dual-port (one read and one write, two reads, or
two writes) operation

• Byte enables for data input masking during writes

• Two clock-enable control signals for each port (port A
and port B)

© B. Baas 127https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

© B. Baas 128

Four Main Methods to Specify an M9K

1. Let Quartus infer an M9K from appropriate verilog
(generally the best approach)

2. Use the IP catalog tool (see an example in the PLL
Tutorial)

3. Use Quartus QSYS (not recommended, #3 is better)

4. Use a Quartus “Language Template”
– Edit > Insert Template > Verilog > Full Designs

> RAMs and ROMs

• See the Compilation Report to find out if M9K
blocks were really used during synthesis

© B. Baas 129

M9K Basic SRAM Template

• The “synthesis
ramstyle” pragma
comment is not necessary
for Quartus to infer a M9K
block but it is a helpful bit
of documentation and
explicitly states what the
designer wants

• With this pragma, Quartus
will either use an M9K or
print a warning

module basic_ram(

input clk,

input wr_en,

input [7:0] data_in,

output [7:0] data_out,

input [6:0] addr_wr,

input [6:0] addr_rd

);

reg [7:0] mem [127:0] /* synthesis ramstyle = M9K */;

// To initialize the RAM, Quartus supports initialization

// which normal RAMs and synthesis do not support.

// initial begin

// mem[0] = 8'b0000_0000;

// mem[1] = 8'b0000_0001;

// mem[2] = 8'b1000_1000;

// ...

// mem[127] = 8'b1111_1111;

// end

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[addr_wr] <= data_in; // write mem

end

data_out <= mem[addr_rd]; // read mem

end

endmodule

© B. Baas 130

M10K Basic SRAM Template

• In the general case, it does
not appear to be helpful to
use any pragmas for M10K
memory declarations

• This example instantiates a
24-bit × 1024-word
memory which should be
built from threeM10K
memory block arrays—
because one M10K can
have 8 or 10 bits per word
when configured for 1024
words.

module basic_ram (

input clk,

input wr_en,

input [23:0] data_in,

output [23:0] data_out,

input [9:0] addr_wr,

input [9:0] addr_rd

);

reg [23:0] mem [1023:0];

// To initialize the RAM, Quartus supports initialization

// which normal RAMs and synthesis do not support.

// initial begin

// mem[0] = 24'h03B03F;

// mem[1] = 24'h000FFF;

// mem[2] = 24'hBEBEBE;

// ...

// mem[1023] = 24'h726384;

// end

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[addr_wr] <= #1 data_in; // write mem

end

data_out <= #1 mem[addr_rd]; // read mem

end

endmodule

© B. Baas 131

M9K and M10K Verilog

• As stated in the Verilog Single-Bit Memories handout, there
should normally not be any logic in register declarations:
always @(posedge clock) begin

This rule is even more important when coding block RAMs. In
many cases the compiler will not use a block RAM (and use
many LUTs instead) if this rule is violated.

© B. Baas 132

M9K Basic SRAM Template

• “In addition to specifying the type of memory block for the RAM
implementation, by setting the value to "no_rw_check", you can use the
ramstyle attribute to indicate that you do not care about the output of the
inferred RAM when there are simultaneous reads and writes to the same
address. By default, Quartus Prime tries to create an inferred RAM with the
same read-during-write behavior as your HDL source. In some cases, a
RAM must be mapped into logic because it has a read-during-write
behavior that is not supported by the memory blocks in your target device.
In other cases, Quartus must insert extra logic to mimic your read-during-
write behavior, which can increase the resource requirements or reduce the
performance of your design. Setting the "no_rw_check" value directs the
Quartus Prime Compiler that the read-during-write behavior of the HDL
source does not need to be preserved.

• You can specify both a block-type and "no_rw_check" in a single attribute
by separating the values with a comma, for example "no_rw_check, M9K",
or you can specify only a block-type or "no_rw_check".

https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/hdl/vlog/vlog_file_dir_ram.htm

© B. Baas 134

M9K Simultaneous Write and Read
Operations

• M9K block RAMs
behave differently
with various port
configurations and
various selectable
simultaneous
write/read
characteristics

• Selectable “old” or
“new” from a single
port is likely
implemented by the
order the RAM
performs the two
operations

Intel MAX 10 Embedded Memory User Guide, page 20

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-10/ug_m10_memory.pdf

Example Design
Utilizing LUT

Memory

• In this example,
the M9Ks are not
enabled and the
large ROM
memories are
implemented
using individual
Logic Elements

© B. Baas 135

Diagrams courtesy Justin Salazar

Example Design
Utilizing Block RAM

Memory

• In this example,
the M9Ks are
enabled

• Many Logic
Elements are freed
for other uses

• Should have a
higher maximum
clock frequency

• Should dissipate
lower power

© B. Baas 136

Diagrams courtesy Justin Salazar

