
UNIVERSITY OF CALIFORNIA, DAVIS
Department of Electrical and Computer Engineering

EEC 181A Winter 2025

Lab 4: Using the VGA Interface on a DE1-SoC Board

I. Introduction

The DE1-SoC board has a 15-pin D-SUB connector designed for VGA
(Video Graphics Array) video output. The VGA synchronization
signals are generated directly from the Cyclone V SoC FPGA. The
Analog Devices ADV7123 triple 10-bit (only the highest 8-bits [9:2]
are used) high-speed video DAC transforms the three color signals
(red, green, and blue) from digital to analog form. Although the VGA
interface can operate at multiple resolutions, this document is written
for 640 × 480 pixel resolution, which contains 307,200 pixels per
image and 18,432,000 pixels per second @ 60 frames per second.

II. VGA Timing Specifications
For more details of the timing specification for VGA synchronization and RGB (red, green, blue) data, search the web for
a good tutorial.

Figure 1 illustrates the basic timing requirements for each row (horizontal) displayed on a VGA monitor. The
vga_col_sync (HSYNC) signal is pulsed low to signify the beginning (“back porch”) of a row of pixels (“display
interval”), and is again pulsed low (“front porch”) after the end of the row. During the display interval, pixel RGB data
drives each pixel ideally at a rate of 25.175 MHz (39.72 ns per pixel) from left to right across the pixel row. To simplify
the FPGA’s setup, we use the 50.000 MHz default clock which divides conveniently to 25.000 MHz.

Figure 1. VGA Timing Specifications. [https://www.epanorama.net/documents/pc/vga_timing.html].
(Note: the 25.17 μs “Active video time” seems to be in error; it should probably be 39.72 ns × 640 = 25.42 μs.)

The timing of vertical synchronization using vga_row_sync is similar to timing of a single row, except that a pulse
signifies the end of one frame and the start of the next, and the data in between comprises all of the rows within a single
video frame.

III. The VGA_controller.v Module

The VGA_controller.v module is designed so that the colors that are driven on the signals ired, igreen, and iblue
will appear at the pixel location indicated by col and row.

Figure 2. VGA_controller module block diagram

Port names (Verilog) Direction Width Description

clk_vga Input 1 VGA clock @ 25.000 MHz

reset_n Input 1 VGA reset, active low, asynchronous

ired Input 8 The input value of red color

igreen Input 8 The input value of green color

iblue Input 8 The input value of blue color

vga_col_sync Output 1 VGA horizontal synchronization signal

vga_row_sync Output 1 VGA vertical synchronization signal

vga_sync Output 1 VGA synchronization signal

vga_ blank_n Output 1 VGA blank signal, active low

ored Output 8 The value of red color to VGA

ogreen Output 8 The value of green color to VGA

oblue Output 8 The value of blue color to VGA

col Output 13 Indicates the horizontal pixel position

row Output 13 Indicates the vertical pixel position

Table 1. Ports of Interface

The timing of when a pixel is displayed is indicated by two signals, col and row. col indicates the current horizontal pixel
position, and row indicates the current vertical pixel position. col ranges from 0–639 and row ranges from 0–479.

IV. Sample Project Description
To prepare for the future possibility of using the 50.000 MHz SDRAM, the example code is written with a main
50.000 MHz clock and a 25.000 MHz divided clock (done in a risky way that you should not do as described in
Rule #7 in the Single-bit Memories handout). So the example code requires the mildly-awkward situation where your
control circuits operate at 50.000 MHz and the pixel rate controller operates at 25.000 MHz. Fortunately the situation is
entirely handled by merely calculating and outputting an RGB pixel color appropriately coordinated by the row and col
signals, even though row and col will change value only every other cycle.

A module or always block is needed to control all of the signals in Table 2. The signals row and col indicate the row
and column position for RGB information on the VGA monitor.

For example, to display the color white at the pixel position (10, 10), when the row and col signals are (13’d0010,
13’d0010), the circuit must drive the ired, igreen, and iblue signals all to 8’hFF.

The overall system reset signal is called reset_n, is asserted low, and is driven by the push button KEY[0].

V. Design Descriptions [100 points]

Download and modify the sample project contained in the posted file vga_top.zip Details not specified must be
chosen by you and listed in your final submission.

1) [10 points] Modify the verilog code in the sample project to draw 2 squares plus 2 rectangles that overlap each other on
the VGA monitor. The color of each is selectable from one of two values chosen by the SW switches. Choose colors,
sizes, and locations on the screen.

2) [25 points] Draw a 25-pixel wide × 25-pixel tall red square in the center of the display, then grow the square larger by
one pixel in each direction per video frame until the whole display is red; then continuously repeat the process.

3) [10 points] When one of the SW switches is switched, change the color of the growing square dynamically such that
the color of the non-black pixels change each cycle. Design, implement, and describe in your report, an algorithm of your
choosing.

4) [40 points] Draw a square on the screen that moves a specified number of pixels each video frame. The number of
pixels of movement is determined by four SW switches: two switches determine the horizontal speed (1, 2, 3, 4 pixels per
frame) and two determine the vertical speed (1, 2, 3, 4 pixels per frame). When the square hits a frame boundary, it must
bounce appropriately as a ball would bounce.

Submitted work [15 points] Submit a pdf document to Canvas with the following for each of the designs:

● Choices you made for your designs (e.g., colors, object sizes, key signals, etc.)
● Circuit diagram of the circuits you designed
● All verilog code

Extra credit [5 points max] Add two more squares to part (4) that bounce independently. Choose some method to set the
velocity of each square to a different value.
 Last update: Feb 18, 2025

