CHIP DESIGN METHODOLOGIES OR DESIGN METHODS
Processor Design Approaches

- Full custom
- Standard cell*
- Gate array*
- FPGA**
- Programmable special-purpose
- Programmable general-purpose

* Design domains of EEC 180

- higher performance
- lower energy (power)
- lower per-part cost
- lower design time
- lower one-time cost
VLSI Design Technologies

- **VLSI**
 - Originally meant “Very Large Scale Integration” meaning a large number of transistors per chip
 - Now generally means “semiconductor chip”
- Characterized by their minimum feature length (length of transistor’s gate)
- Some typical state-of-the-art fabrication technologies in late 2019:
 - 14 nm Mature production for logic chips
 - 5 nm “Industry-leading 5 nm CMOS technology features, for the first time, full-fledged EUV, and high mobility channel finFETs, offering ~1.84x logic density, 15% speed gain or 30% power reduction over 7 nm. This true 5 nm technology successfully passed qualification with high yield, and targets for mass production in 1H 2020.” —IEDM, December 2019
Full Custom

- All transistors and interconnect drawn by hand
- Full control over sizing and layout

[figure from S. Hauck]
Full Custom

- Multiplier chip
 - Multiplier
 - I/O pads
 - Clock generator
 - Control logic
 - Buffers
Standard Cell

- Constant-height cells
- Regular “pin” locations
- Regular layout allows CAD tools to much more easily automatically place and route cells

[figure from S. Hauck]
Standard Cell

- Channels for routing only in older technologies (not necessary with modern processes with many levels of interconnect)

[figure from S. Hauck]
Standard Cell

- Wireless LAN chip
- Ten major standard cell digital blocks. Plus one analog block in the upper right corner
- Many embedded memory arrays
- Horizontal power grid stripes
Combination Standard Cell and Full Custom

- Dense, regular full-custom blocks
- Random logic implemented with standard cells and automatic place and route

[figure from S. Hauck]
Typical Standard Cell, Gate Array, or FPGA Design Flow

- HDL (Verilog) source code is synthesized to generate a gate netlist made up of elements from the Standard Cell library
- The same HDL design may be synthesized to various libraries; for example:
 - Standard cell (NAND, NOR, Flip-Flop, etc.)
 - FPGA library (CLBs, LUTs, etc.)

HDL (Verilog or VHDL)

Ex: \(c = a \& b \)

Synthesizer CAD Tool

Hardware Implementation (e.g., gate netlist)

Ex: \(x = \text{NAND}(a, b) \)
\(c = \text{INV}(x) \)
Simplified diagram of Standard Cell design flow after synthesis

Hardware Implementation (e.g., gate netlist)
Ex: \(x = \text{NAND}(a, b) \)
\(c = \text{INV}(x) \)

Place & Route

Final Layout (could be fabricated)

Design Rule Check (DRC)

Layout vs. Schematic (LVS) Check

Gate-level description

Timing Information

Gate level dynamic and/or static analysis

© B. Baas
“Soft” Macro Modules

```c
string mat = "booth";
directive (multtype = mat);
output signed [16] Z = A * B;
```

Source: Digital Integrated Circuits, 2nd ©
Gate Array

- Polysilicon and diffusion are the same for all designs
- Metal layers customized for particular chips
Gate Array

- Polysilicon and diffusion the same for all designs
- 0.125 um example
Gate Array — Sea-of-gates

Uncommitted Cell

Committed Cell
(4-input NOR)

Source: Digital Integrated Circuits, 2nd ©
Field Programmable Gate Array (FPGA)

• Metal layers now programmable with SRAM instead of hardwired during manufacture as with a gate array
• Cells contain general programmable logic and registers

[figure from S. Hauck]
Field Programmable Gate Array (FPGA)

- Chip hardware is “designed” with software
- User pays for up-front chip design costs
 - None shared full-custom, standard cell
 - Half shared gate array
 - Fully shared FPGA
- User writes HDL code (e.g., verilog), compiles it, and downloads the hardware configuration into the FPGA chip
- The flexibility comes at a great cost however; as a very approximate comparison, FPGAs are “typically” perhaps \(~10x\) slower (clk freq), \(~100x\) less energy efficient, and far greater circuit area (semiconductor cost) than an equivalent Standard Cell design
Programmable DSP Processor

- TI C64X
- 600 MHz, 0.13 um, 718 mW @ 1.2 V
- 8-way VLIW core
- 2-level memory system
- 64 million transistors
General Purpose Processor

- Intel 8086
- First released 1978
- 33 mm²
- 3.2 μm
- 4–12 MHz
- 29,000 transistors
4.80 GHz General-Purpose Processor

- Intel i9 (formerly called Coffee Lake) [i9-8950HK]
- 14 nm CMOS
- 6 cores (12 threads)
- 2.90 GHz base frequency
- 4.60 GHz standard turbo frequency
- 4.80 GHz maximum turbo frequency—possible only if the CPU is below 53 °C
- 12 MB on-die cache
- 45 Watts TDP (Thermal Design Power)
Massive General-Purpose Server Processor

- Itanium Poulson
- 32 nm
- 3.1 Billion Transistors
- 18.2 mm x 29.9 mm = 544 mm²
- 8 multi-threaded cores
- 54 MB total on-die cache
- 170 Watts TDP
- [ISSCC 2011]
Massive Special-Purpose Processor

- Nvidia V100
- TSMC 12 nm FinFET
- 21.1 Billion Transistors
- 815 mm²
 - Approximately 37.9 mm x 21.5 mm
 - At the reticle limit
- 1.45 GHz
- 80 streaming multiprocessors
- 300 Watts TDP
- Memory interface to HBM2
 1.75 GHz, 4096-bit bus, 900 GB/s
- [HotChips 2017]
Graphcore

COLOSSUS GC2
The world's most complex processor chip with 23.6 billion transistors

10x IPU-LINKSTM
320GB/s chip-to-chip bandwidth

300MB IN-PROCESSOR-MEMORYSTM
45TB/s memory bandwidth per chip
the whole model held inside the processor

PCIe Gen4 x16
64GB/s bi-directional host communication bandwidth

1,216 independent IPU-CORESTM
each with IN-PROCESSOR-MEMORYSTM tile
> 100GFLOPS per IPU-CORESTM
> 7,000 programs executing in parallel

8TB/s all to all IPU-EXCHANGESTM
non-blocking, any communication pattern

© B. Baas
Heterogeneous Programmable Platforms

Xilinx Vertex-II Pro

- FPGA Fabric
- Embedded memories
- Hardwired multipliers
- High-speed I/O

Embedded PowerPc
Design at a crossroad
System-on-a-Chip

- Often used in embedded applications where cost, performance, and energy are big issues!
- DSP and control
- Mixed-mode
- Combines programmable and application-specific modules
- Software plays crucial role
A System-on-a-Chip Example
High Definition TV Chip

![Diagram of a System-on-a-Chip with labels for SDRAM/GRAM, MAIN MEMORY INTERFACE, PI BUS, CVP/MEMORY BUS, TRIMEDIA VLIW CPU, MPEG-2 COPROCESSOR, HDVO, SD VIDEO OUT, AUDIO OUT (2), SPDIF OUT, AUDIO IN (2), PCI/XIO INTERFACE, TS/VIDEO IN (2), DVDD, I²C, SSI.]

Courtesy: Philips
The World’s Largest Chip
Cerebras Wafer-Scale Engine

- 46,225 mm² chip
 - 8.5” × 8.5”
 - Built from a 12” wafer
 - 56x larger than the biggest GPU ever made: 815 mm² and 21.1 billion transistors
- 1.2 Trillion transistors
- 15 KWatts!
- 400,000 cores
- Fabbed by TSMC, 98%-99% of wafer area is usable
- 18 GB on-chip SRAM
- 100 Pb/s interconnect (100,000 Tb/s = 12,500 TB/sec)
- Approximately $200M startup capital as of Aug 2019