FROM THE HARDWARE DESCRIPTION LANGUAGE (HDL) DESIGN TO HARDWARE
Typical Standard Cell, Gate Array, or FPGA Design Flow

- Involves synthesizing Verilog source code to generate a gate netlist made up of elements from the Standard Cell library.
- Design Compiler (DC) by Synopsys is the most popular synthesis tool used in industry.
- The same Verilog design could be synthesized to various libraries; for example:
 - Standard cell (NAND, NOR, Flip-Flop, etc.)
 - FPGA library (CLBs, LUTs, etc.)
Synthesis Cell Library

• The Cell Library contains the basic building blocks of the final design ("hardware implementation")

• Standard Cell Design
 – AND, OR, INV, XOR, Flip-Flop, AOI, Full-Adder, etc.
 – Many sizes/strengths of each—e.g., X1, X2, X4, X8

• FPGA
 – LUTs
 – Available structures such as multipliers, DSP slices, block memories, etc.
HDL → Hardware Implementation

• **Standard Cell Design**
 – Hardware is described by a gate netlist made up of gates from the cell library, plus interconnection specifications

• **FPGA**
 – Hardware is described by a configuration *bitfile* that specifies how configurable elements from the cell library (LUTs) are configured, plus interconnection specifications

• **In both cases, digital hardware to be implemented on a chip has been designed by an HDL description**