Lab 4: A Hierarchically-Built Sorter

I. Prelab

[10 pts] Create and document a preliminary design of your circuit including helpful diagrams and a draft of your Verilog code. Submit your work at the beginning of your lab session.

II. Project Overview

Custom digital hardware can have significant performance advantages over programmable processors because datapaths can be customized for specific calculations and also because of the ability to exploit a large amount of parallelism, workload permitting. This design is fully combinational meaning the entire process can be calculated in a single clock cycle enabling performance in a scaled-up design that is orders of magnitude faster than what a programmable processor can accomplish. Details not specified in this lab should be chosen by you and stated in your lab report.

Board-level input and output keys, switches and displays for the design are:

- KEY0 Selects whether HEX5–HEX2 show the sorter’s outputs (KEY0 not pressed) or the sorter’s inputs (KEY0 pressed)
- {SW1,SW0} Selects the input test number
- HEX0 7-segment display of input test number [3,2,1,0]
- HEX5–HEX2 Displays the four sorted outputs
- LEDR9 Lights when at least one input is 4'b1111
- LEDR8 Lights when at least one input is 4'b0000
- LEDR7 Lights when the four inputs are already in sorted order

All data words are 4-bits wide and unsigned (values range from 0 to +15). The four input data words are generated by the module testgen.v which is provided to you.

III. sort2.v

Design a module which sorts two input values such that the lower value appears on output out0 and the greater value appears on output out1.

\[\text{in1} \rightarrow \text{sort2} \rightarrow \text{out1} = \text{greater value} \]
\[\text{in0} \rightarrow \text{sort2} \rightarrow \text{out0} = \text{lower value} \]

Figure 1. sort2.v module with 4-bit unsigned inputs and outputs
IV. bubble4.v
Design a module which performs a single stage of a bubble sort as shown in Figure 2.

![Figure 2. bubble4.v module block diagram](image)

Test your bubble4.v design in simulation with a simple testbench.

V. sort4.v
Design a module which performs a complete bubble sort of four inputs as shown in Figure 3.

Connect testgen.v to the inputs to provide test data.

![Figure 3. sort4.v module block diagram](image)

VI. top.v
Instantiate copies of sort4.v, testgen.v, seg7.v (your design from Lab 2), and other logic to implement the functions described in Section II.

VII. Testing in Simulation
Design and write a testbench for your module that exercises all major functions.

Once your design is working correctly in simulation, demonstrate it exercising your module to your TA and have it checked off.
VIII. Implementation and Verification on the DE10-Lite

Once your design is working correctly on the DE10-Lite FPGA board, demonstrate it exercising your module to your TA and have it checked off.

Submitted Work [100 pts total]

With the exception of instructor-provided code, all work must be yours alone.

[10 pts] Prelab

[75 pts] Lab Checkoffs

1) [25 pts] Demonstrate correct operation in simulation using your testbench

2) [50 pts] Demonstrate correct operation on the FPGA board

[15 pts] Lab Report

1. [5 pts] Calculate and report the number of input combinations required for an exhaustive test of:
 a) sort2.v
 b) bubble4.v
 c) sort4.v

2. Submit all Verilog hardware and testbench code that you wrote. Do not include any code that you did not write such as files generated by Quartus or IP components.
 a) [10 pts] Print and submit a paper copy during your lab session.
 b) Upload a copy to Canvas by performing the following steps by the end of your lab session—this is essential to receive credit for the entire lab.
 1. Make a folder on your computer
 2. Copy all verilog files you wrote into the folder—only the ones you wrote
 3. “zip” the folder into a single .zip file
 4. Log onto Canvas, click Assignments, find the correct lab number
 5. Upload the .zip file