9.2a Using monxes to implement combinational logic

A) Number of mux inputs = 2 Number of input bits

	A	B	Z
-	0	0	0
	0	1	1
	1	0	0
	1	1	1

0 -0 7 7 7 7 7 7 7 7 7 7

AB

B) Number of mux inputs = 1 2 . 2 Num. of input bits

ABC	7.		
000	0	A8=00	£00=0
001	0.	3	
010	1	AB=01	£01=1
011	1.		
100	0	A6=10	Z10 = C
101	1		
110	ŀ	} AB = 11	£11 = C
1 1 1	0) No = 11	

0 -0 1 -1 2 -2 7 -3 AB

- · Assign any input variables to mux control imputs
- · For each muximput, there are only four possibilities:
 - 1) (
 - 2) 1
 - 3) last imput variable
 - 4) last input variable inverted
- . .. Any boolean expression can be implemented

Other solutions:

$$\begin{array}{c|c}
0 & -0 \\
A & -1 \\
1 & -2 \\
\hline{A} & -3
\end{array}$$

c) Number of maximpats = \frac{1}{2^2} - 2 Number of input bits

1) Approach # 1

Look at K-map instead of truth table:

There are to ways to choose 2 of the 4 input variables.

"4 choose 2" =
$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{24}{2-2} = 6$$

There are 16 possible combinations for each box of 4 outputs. 6 are trivial to implement, the other 10 require a gate.

· Designer judgment is required to find the best solution

- 2) Approach #2
 - a) Find minimum 50P or POS solution
 - b) Use mux to implement a sub-term

Ex: Z = ACD + BD

