Implicants - any valid 1-sum group

Prime Implicant - max-size implicant

Essential Prime Implicant - P.I. that is essential for a min solution

Minimum Solution:
- always contains all EPI's
- may contain some P.I.'s (not EPI)
- never contains any plain implicants (not P.I. or EPI)

To find min soln:
1) Include all EPIs
2) If necessary, add P.I.s until all minterms are covered.
 Cover X's only if helpful.

Implicants: all groups

PI's: \(AB', AC'D, BC'D, B'D' \)

EPI's: \(AB', BC'D, B'D' \)

\[m_9 \rightarrow AB' \]
\[m_7 \rightarrow BCD \]
\[m_5 \rightarrow B'D' \]
To find EPIs:
1) Choose a minterm (1 on K-map) and look at all P.I.s that cover it.
2) If only 1 P.I., → that one is essential.
 If > 1, P.I., → learn nothing.
3) Repeat for all minterms.

Adders (Unit 4)

Half Adder
\[\begin{array}{c|c|c}
a & b & s \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array} \]

Full Adder
\[\begin{array}{c|c|c|c|c}
\text{a} & \text{b} & \text{c} & \text{car} & \text{sum} \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
\end{array} \]

\[\text{sum} = a \oplus b \oplus c \]
\[\text{car} = ab + bc + ac \]
Ripple-Carry Adder
- simplest
- slowest

MUX

<table>
<thead>
<tr>
<th>c</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
4:1 multiplexer

2^N inputs, N select bits

Quine-McCluskey (Unit 6)

- Works with many inputs
- Easy to program

1) Find all P.E.
2) Find all E, P.E.
3) Build minterm solution

\[E = \Sigma m(1, 2, 5, 6, 7) \]

\[= A'B'C + A'BC' + AB'C + ABC' + ABC \]
List groups by # of 1s in minterm

Compare minterm pairs in adjacent groups

Copy term pairs that differ in one variable to next column and check "\(\checkmark \)" matched terms

Repeat until no more matches
Multi-level Circuits

Level of a circuit = max. # of gates in series between an input and output

SOP: 2-level: AND - OR
POS: 2-level: OR - AND

Ex. \(Z = (ABC + EF + G) \cdot H + ABCD \)

Why do levels matter?
- # of gates
- Fanin (# of inputs to a gate)
- Fanout (# of outputs of a gate)
- Delay

NANDs and NORs

Min terms and max terms \(\rightarrow \) AND, OR, NOT are "functionally complete"

AND?: Can't make an inverter \(\rightarrow \) Not functionally complete
\[A \cdot A \]

OR?: Can't make an inverter \(\rightarrow \) " "
\[A + A \]
INV?

Don't make AND, OR → Not finite, complete

NAND?

NAND

NOT

\[\overline{a \cdot \overline{a}} = a \]

AND

OR

NAND is finite, complete!

NOR