Minterm Example

- This circuit schematic shows all 8 minterms “present” for a 3-input combinational logic function.
- In practice, all possible minterms would never all be present in a circuit (do you see why?)
- There is one possible minterm for each row in the truth table.
Minterm Example

- By construction, one and only one minterm is active (equals 1) at any point in time.
Minterm Example

- By construction, one and only one minterm is active (equals 1) at any point in time
Minterm Example

- By construction, one and only one minterm is active (equals 1) at any point in time.
By construction, one and only one minterm is active (equals 1) at any point in time.
Minterm Example

- By construction, one and only one minterm is active (equals 1) at any point in time
Minterm Example

- By construction, one and only one minterm is active (equals 1) at any point in time
Minterm Example

- $Z = m_0 + m_1 + m_7$
- To implement an expression, a circuit is built with only the present minterm(s)
- The output can be 1 only when one of the present minterms forces the output to 1
Minterm Example

• $Z = m_0 + m_1 + m_7$
• To implement an expression, a circuit is built with only the present minterm(s)
• The output can be 1 only when one of the present minterms forces the output to 1
Minterm Example

- \( Z = m_0 + m_1 + m_7 \)
- Of course gate inputs cannot be left unconnected (unspecified). There are two solutions:
  - Tie unused inputs to a value that disables those inputs. For an OR gate, inputs would be tied to 0 (or False or Gnd)
  - The best solution is to simplify the gate. In this example, the 8-input OR gate is simplified to a 3-input OR gate