
UNIVERSITY OF CALIFORNIA, DAVIS 

Department of Electrical and Computer Engineering 

 

EEC 18 DIGITAL SYSTEMS I Fall 2024 

 

 

 

 Lab 6: Dice Game 19 

 

Objective: In this lab, you will design a dice-based game called 19. The object of the game is to score exactly 19 points in 

as few rolls of a simulated die as possible. After each roll, the player can choose to add the current die value to his or her 

score or not, unless the die value is six, in which case it is automatically added to the player’s score. If the player’s score 

exceeds 19 or the total turn count reaches 7, the player loses. If the player’s score is equal to 19, the player wins. 

Preparation (Pre-lab) 

• Draw a preliminary state diagram for the game as either a Moore or Mealy finite state machine. 

• Determine the components (gates, etc.) you will use for the turn counter, die counter, and score circuits, and list 

them out. 

Description 

To start the game, the player resets the system using the reset input. The score will be set to zero (“00”), the ready_to_roll 

LED will be on, and the win, lose_19, and lose_turns LEDs will be off. The player then rolls the die by asserting the roll 

signal. The die counter operates with a clock frequency of 50 MHz so that the player cannot control the outcome. When 

roll is de-asserted, the roll ends. The signal turn_count is then incremented by one to indicate that the player has taken a 

roll. If the turn counter reaches 7, the lose_turns LED is lit and remains on until the system is reset. 

The die-rolling circuit must operate only once and only at the proper time. For example, a player cannot roll again after a 

roll until either the accept or reject button is toggled, or unless a six is rolled. Also, the player cannot roll the die after the 

game has ended.  

If the player rolls a six, it is 

automatically added to his or 

her score. Otherwise, the 

player can toggle the accept 

switch to add the die value to 

his or her score or the player 

can toggle the reject switch 

to leave the score unchanged. 

After each roll, the score will 

be greater than, less than or 

equal to 19. If the score is 

equal to 19, the player wins – 

the win LED is turned on and 

remains on until the system is 

reset. If the score is greater 

than 19, the player loses – the 

lose_19 LED is turned on 

and remains on until the 

system is reset.  

If the score is less than 19 

and the turn count is less than 

7, the player will roll again. 

After each roll, the player 

toggles either the accept 

switch or the reject switch 

(unless a six is rolled) before 

the die can be rolled again. 



Play continues until the player’s score equals or exceeds 19 or the player has used 7 turns. 

A block diagram of the system is shown in Figures 1 and 2 and a flowchart is shown in Figure 3. While three score_* 

signals are shown so the controller knows the relevant range of the current score, all three are not necessarily needed. 

 

 

Figure 2. Schematic of Score Processing and Display Circuit 

 

Design Requirements 

1. Use the counting sequence assigned to you in the previous lab for your die.  

2. Use only flip-flops clocked by a single 50 MHz system clock for all single-bit memories. The clock signal cannot be 

“gated”—that is, the single clock must directly clock all flip-flops.  

3. Assume the pushbutton switches, KEY[1..0], are bounceless since they have been debounced on the DE10-Lite board 

using a Schmitt trigger circuit. However the SW[] slide switches are not debounced—in other words, the output when 

switching from one value to another will typically make many transitions before settling at the final value  

(e.g., ...0000-1-0-1-0-1-0-1111...).  Design your state machine to work properly under these circumstances. 

4. Display the number of turns in decimal ranging from 0 to 7 on one 7-segment display. 

5. Display the score in decimal on two 7-segment displays. You must correctly display scores up to the highest possible 

score. (What is it?) Follow the schematic in Figure 2 to design the Score Processing and Display Circuit. Use Ripple 

Carry Adders created from Full Adders for your design. After a dice roll, add the counter output to the BCD ones 

score register. If the sum is less than 10, the ones and tens values are correct. On the other hand, if the sum is 10 or 

greater, subtract 10 from the sum to find the correct ones. The BCD tens score register then needs to be incremented 

by 1 in this case. 

6. Make sure that your game is “well-behaved” under unspecified circumstances, for example when accept and reject are 

activated at the same time following a roll. Based on the flowchart in Figure 2, the reject switch should have priority 

over the accept switch so that if reject is pressed, the state machine should transition directly to a new roll state 

without updating the score even if the accept switch is also pressed simultaneously.  

7. Display any useful information you can think of on unused LEDs to help in debugging. 



8. Implement your design in a Quartus schematic using 

only the following components: Basic logic gates (AND, 

OR, NAND, NOR, NOT, etc.), DFF, DFFE, 7447, 7474, 

7483, 74163, 74190, WIRE, INPUT, OUTPUT. 

 

Design Guidelines 

1. Carefully evaluate design alternatives. For example, 

determine if you will implement your control circuit 

as a Mealy or a Moore finite state machine. Also, 

determine which state assignment encoding will be 

optimal from choices such as one-hot, binary or 

other encodings. Note that using a one-hot encoding 

can greatly simplify the design process and the fact 

that it uses extra flip-flops doesn’t matter since you 

are implementing your design in an FPGA with 

more than enough resources. 

2. If your design doesn’t work and you cannot debug it 

by using LEDs on the state register outputs and 

other signals, try manually clocking it with a 

debounced switch. 

3. Design and test your system by breaking it into 

small modules and testing them individually, as 

needed. You should also simulate your design in 

ModelSim before implementing on the FPGA board. 

4. Remember to import the pin assignments after you 

add all your input and output components! 

 

Extra Credit 

▪ (+5 max) Additional interesting and useful debug 

capability 

▪ (+5 max) Additional interesting new game feature 

 

 

 



Lab Report  

Each individual must submit a lab report.  Use the format specified in the "Lab Report Requirements" document available 

on the class web page.  Also include the following items: 

❑ Graded pre-lab 

❑ Complete documentation of your design including: 

▪ State diagram 

▪ State assignments 

▪ State table 

▪ Next state equations 

▪ Tables, Kmaps and all other work showing how you made your design 

▪ Complete Quartus schematic 

❑ Explain how and why you chose the state assignment encoding that you did.  

❑ Based on your design, what happens if the Add and Pass switches are both activated simultaneously after a roll? 

Explain how this is implemented in your design. 

❑ Suggest at least one new feature you would add if you had more time. 

 

Grading  (200 maximum + 10 possible extra credit) 

▪ Prelab 25 points 

▪ Lab Verification TA sign off 100 points 

▪ Lab Report 75 points 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

2024/12/02 Added three signals originating from the Score Processing and Display Circuit 


