2) Electrostatic discharge (ESD)

\[Q = C \cdot V \]

- \(C \) on chip - small
- modest amount of \(Q \)
- \(V = \frac{Q}{C} \) can go very high!
- destroy gate oxide

ESD diodes

- if \(V_{PAD} > V_{DD} + 0.7V \)
- if \(V_{PAD} \leq -0.7V \)

ESD comes in a brief burst, so an RC helps reduce effect
SCR - Silicon-controlled rectifier

![SCR Diagram](image)

4) "Bypass caps" or "Decoupling caps"

- Reduce fluctuations in Vdd/Gnd

![Bypass Capacitor Circuit](image)

Most effective cap: nearest circuit.

But smallest space... """"

→ Smallest cap.

→ Watch out for leakage.
1. On-Chip Transistors
 a) Stel.
 \[\text{not min. length} \]
 b) Thicker oxide transistor
 - used for I/O circuits
 - lower cap area
 - lower gate current leakage

2. MIM Caps - Metal-Insulator-Metal cups
3) Trench caps
 - found in processes that support DRAM

5) High current wires other than VDD/ground

Ex. clock tree
 → RC delay
 → electromigration

6) Electromigration
 - Wear-out failure for high current
 low cross-sectional area metal wire
 - metal atoms move

 I →
 - worse for DC
 - worse at high temps
7) High current distributed loads

1) Chain of inverters - lumped C

2) Distributed C

3) Clock tree
 - FFs distributed
 - low clock skew
H-Tree
- distrib. C
- low skew

(one clic network node)

(source (as example))
FIB units of circuits

Spare Gates

Packages
 • Rents Rule
 • Solder
 • System - PWB - Pkg - Chip
 • Chip to Pkg
 1) Wire bond
 2) TAB
 3) Flip chip solder bump
 • Pkg-to-Board
 1) Through hole
 2) SMT
 a) Bump-wings
 b) J-lead
 c) solder balls

Packages!
 • Multi-chip modules
 • 3D: TSVs, stacked die

Ann
 • tileable, about