Top: drains

1. Top level metal
 600 x 600 μm - 1500 μm x 1500 μm
 - often all metal layers
 - via on side of pad
 - no circuits below pad

2. Opening in passivation
 53 μm

3. Pitch
 80 - 150 μm
 80 μm
2) Opening in glass

Types of pads

- Power (Vdd, Gnd)
- Input
- Output
- I/O

![Diagram of pad types](image-url)
- Corner pads

Output drivers

- Massive
- Folded
- Separate NMOS & PMOS more
- Surround MOS of PWC or NWC
 - "Guard ring" - for latchup

[Diagram of output drivers]
2) Electrostatic Discharge (ESD)

\[Q = CV \]

chip: \(C \) is very small

moderately \(Q \rightarrow V \uparrow \) high

- ESD diodes

- Low-pass filter

- Silicon-controlled rectifier (SCR)
3) Power/Gnd Grids
 a) Vdd/Gnd "Power Rings"

 b) Vdd/Gnd grid over chip
 - where it makes sense
 - top level metal 2x thicker

4) Bypass or Decoupling Capacitors
 Reduce fluctuation in Vdd/Gnd
 cheaper ➔ more effective
On-Chip Caps

a) std MOS

- NOT min. length
- leakage

b) Use 2nd type MOS, thicker gate oxide

c) Metal-Insulator-Metal (MIM) caps

m∠: 60°
m∠: 90°

<table>
<thead>
<tr>
<th>Vdd</th>
<th>And</th>
<th>Vdd</th>
</tr>
</thead>
<tbody>
<tr>
<td>And</td>
<td>Vdd</td>
<td>And</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vdd</th>
<th>And</th>
<th>Vdd</th>
</tr>
</thead>
<tbody>
<tr>
<td>And</td>
<td>Vdd</td>
<td>And</td>
</tr>
</tbody>
</table>

5) High-Current Wires

- Use wider metal

Ex: clock

![OC circuit](image)
6) Electromigration
 - only in metal

 I →

 a) E field
 b) momentum of ions

 - worse for DC than AC
 - worse at high temps

7) High-voltage-driven leads

 1) Clean or rinse
 2) Dist. rinse
 3) "H tree"
Office

Hour

10 cm \times 1 \text{mm} = (10^5 \text{mm} \times 1 \text{mm}) \times 3 \text{mm}^2 = 3 \text{pF}

10 \text{cm} \times 2 \times 40 \text{pF/mm}

\frac{1}{C_0}

\frac{1}{C'}