1) Simplest

\[T_p = 0.69 \cdot R \cdot C \]

2) Split up wire

\[R_i = \frac{R_{\text{TOTAL}}}{N} \]
\[C_i = \frac{C_{\text{TOTAL}}}{N} \]

For large \(N \), using Elmore delay eqn,

\[T_{DN} = \frac{R_i C_T}{2} \]

Let \(L = \) length of wire
\[R_T = r \cdot L \]
\[C_T = c \cdot L \]

\[T_{DN} = \frac{r \cdot c \cdot L^2}{2} \approx \frac{T a L^2}{2} \]
3) Distributed RC line

P.D.E. \(V \), \(\tau C \frac{dV}{dt} = \frac{d^2V}{dx^2} \)

diffusion equation

\[0 \rightarrow \frac{V_{DD}}{2} \text{ at end of wire} \]

\[t_p = 0.38 \frac{R_C}{C} = 0.38 (RL)(RL) = 0.38 vC L^2 \]
<table>
<thead>
<tr>
<th>Input to wire</th>
<th>Output of wire</th>
<th>Lumped RC</th>
<th>Distributed RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 → (\frac{\text{Vdd}}{2})</td>
<td>0.69 (R \cdot C)</td>
<td>0.38 (R \cdot C)</td>
</tr>
<tr>
<td></td>
<td>0 → 63% ((t))</td>
<td>(R \cdot C)</td>
<td>0.5 (R \cdot C)</td>
</tr>
<tr>
<td></td>
<td>10% → 90% ((t_r))</td>
<td>2.2 (R \cdot C)</td>
<td>0.9 (R \cdot C)</td>
</tr>
</tbody>
</table>

RC wire delays should be considered when they are a significant fraction of the gate delay.

To reduce wire delays:

1) Make wires shorter - layout
2) Maybe increase wire width
 \(R \downarrow \)
 \(C \uparrow \)

Most helpful on poly
3) Use higher level of metal

 Caution: Watch out for intra-layer cap.

4) Pipeline circuit

 \[C = \varepsilon \frac{A}{\ell} \]

 \[3 \cdot (k \cdot r \cdot c \left(\frac{L}{3} \right)^2) + 2 \cdot \text{Delay of inverters} \]

 \[= (k \cdot r \cdot c \cdot L^2) \cdot \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \]

2.5) Increase wire spacing

5) Adding repeaters
1) Break into N small pieces

2) "T" models

3) "π" models

"π3" error < 3%
Transmission Lines

- Signal moves as a wave down wire

- Typical on-chip char. impedance Z_0

 $10 \Omega - 200 \Omega$

 50Ω Classic

 85Ω Nepomi, Zcc, Nvidia NVLink

1) Parallel Termination

2) Series Form

$$R = Z_0 - Z_d$$

$Z_d =$ driver output impedance

3) Thevenin
1) AC

- ac + DC current

Chip-level Structures and Issues

1) Input/output to/from chip

- Standard wire bonds
 - pads on periphery

- Dense double-row of pads
 - slightly more prone to mistakes
c) Area pads

- Flip chip package
- Many more signals
- Lower R, C
 - Signals
 - Vdd, Gnd

Typical dimensions of pads

- Top metal square
 - 60μm × 60μm
 - 100μm × 100μm
- Often a stack of all metals
- Vias often off to side!
- No circuits below