Modeling a distributed RC wire for simulation

1. Break up into N pieces

\[\frac{R_{\text{total}}}{N} \]

\[\frac{C_{\text{total}}}{N} \]

2. "T" models "T"

\[\frac{R/2}{C} \]

\[\frac{R/4}{C/2} \]

3. "Π" models "Π"

\[\frac{R}{C_2} \]

\[\frac{R}{C_4} \]

\[\frac{R/2}{C_4} \]

\[\frac{R/2}{C_4} \]

* Π3 model within 3% of actual distributed RC
Transmission lines

Model w/ trans. lines when time of flight is comparable to t₁ and tₙ.

Signal velocity \(v = \frac{1}{\sqrt{LC}} \)

\(L = \text{inductance/length} \)

\(C = \text{capacitance/length} \)

Characteristic impedance \(Z₀ = \sqrt{LC} \)

Typical \(Z₀ \) on chips = 10Ω - 200Ω

Classic \(Z₀ = 50Ω \)

Nvidia NVLink: 85Ω
1) Parallel Termination

2) Series Termination

3) Thru Ring

4) Ac
Std Cell Place & Route

1) "Front End"
 - Verilog
 - Synthesis \rightarrow gate-level netlist
 - Gate-level simulation

2) "Back End"
 - P&R
 - DRC
 - LVS
 - \equiv

Verilog: $c = !a \land b$

![Diagram of Verilog logic](image)

P&R:

![Diagram of P&R logic](image)
Chip-level Structures and Issues

1) Input/Output of chip

- Large metal regions on chip for I/O

a) Standard wire bonds
 - On periphery

b) Double row of pads

c) Area pads

 + Lower R + C
 + Signals
 + Vdd / Gnd
Typ. drains

1) Top level metal
 60 x 60 µm - 100 x 100 µm
 - often all metal layers
 - vias on side of pad
 - no circuits below pad

2) Opening in passivation

3) Pitch
 80 - 150 µm

50 x 50 - 90 x 90 µm