4:1 Mux

\[a \quad \overline{s_1} \overline{s_0} \]
\[b \quad s_1 \overline{s_0} \]
\[c \quad s_1 s_0 \]
\[d \quad \overline{s_1} s_0 \]

\[\text{out} \]

\[a \quad 00 \]
\[b \quad 01 \]
\[c \quad 10 \]
\[d \quad 11 \]

\[\text{out} \]

\[\overline{s_1} \overline{s_0} \]

\[a \quad \overline{s_1} \overline{s_0} \]
\[b \quad s_1 \overline{s_0} \]
\[c \quad s_1 s_0 \]
\[d \quad \overline{s_1} s_0 \]

\[\text{out} \]

\[\text{buffer output} \]

\[\text{buffer output} \]
b) Transmission Gate Logic

N/MOS \rightarrow trans. gate

\[a \quad \bar{b} \]
\[\quad \Rightarrow \quad \]
\[a \quad \bar{b} \]

\[V_{dd} \]
may still buffer to increase drive current

Big picture
Exercise 2.1: 2:1 multiplexer

![Diagram of a 2:1 multiplexer]

- **Might add inputs**
- **Incorporate area a lot**

<table>
<thead>
<tr>
<th></th>
<th>Only PDN on</th>
<th>Only PDN off</th>
<th>Both PDN on</th>
<th>Neither PDN on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>out = 1</td>
<td>out = 0</td>
<td>transition</td>
<td>never</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Precharge</td>
<td>Evaluate</td>
<td>never</td>
<td>Evaluate phase</td>
</tr>
<tr>
<td></td>
<td>phase</td>
<td>phase & out = 0</td>
<td></td>
<td>out = 1</td>
</tr>
<tr>
<td>Ratified</td>
<td>out = 1</td>
<td>never</td>
<td>out = 0</td>
<td>never</td>
</tr>
</tbody>
</table>
Chapter 4 - Wires

Chip consists of (physical view)

1) Transistors for "work"
 - Datapath
 - Memory
 - Control

2) Wires
 - Signals
 - Vdd / Gnd

3) Misc
 - I/O pads

- Signals can be routed using:
 1) diffusion (N or P) only very short distances
 2) poly (for short distances)
 3) metal (common)

- Power / Gnd
 "Always in metal"
Wire capacitance

A) "Bottom plate"

\[C = \varepsilon \frac{W \cdot L}{t} \]

\[\varepsilon = \text{permittivity} = \varepsilon_r \varepsilon_0 \]

\[\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m} \]

\[\varepsilon_r = 1 \text{ free space} \]

\[\varepsilon_r = 3.9 \text{ air} \]

B) Fringing

C) Estimate bottom plate + fringing cap

\[C_{PP} + C_{image} = \frac{W - H/2}{t} + \frac{2\pi \varepsilon}{\log (2t/H + 1)} \]

PM-dominates
Traditional wires

- wider + flatter wires
- fewer levels
- long tr and tf
 - neglect $L \frac{di}{dt} \sim 0$

- gate delay \gg wire delay
 \[\therefore \text{ neglect } R \text{ wire} \]

- Trad. wire model
 - $R \text{ wire} = 0$
 - All cap. is to substrate
 - Inductance ≈ 0

Modern wires

- smaller and thinner
- higher R
- intra-layer cap. significant
- fast t_r and t_f
 - L important
- old: $5V, 5W \rightarrow 1$ Amp

 now: $1.1V, 50W \rightarrow 45$ Amps

 - L and R important for vad/and
- levels of metals
 1. $1.0\mu m$ CMOS
 2. $0.18\mu m$
 3. $0.13\mu m$
 4. $0.14\mu m$ IBM POWER 9

\[\text{Ex: for } 0.25\mu m \text{ CMOS } \Rightarrow \lambda = 0.125\mu m \]